NYSERDA P-12 Schools: Green and Clean Energy Solutions Cortland Enlarged City School District

Submitted to: NYSERDA

Submitted from:

M/E Engineering, P.C. 60 Lakefront Boulevard, Suite 320 Buffalo, NY 14202

November 19, 2021 M/E Reference 211078

BUFFALO · ROCHESTER · SYRACUSE · CAPITAL DISTRICT www.meengineering.com

TABLE OF CONTENTS

EXECUTIVE SUMMARY	1
NYSERDA PROJECT SUMMARY SHEET	4
CONTACT SHEET	7
EXISTING CONDITIONS	9
UTILITY ANALYSIS	12
APPROACH / METHODOLOGY	13
ENERGY ANALYSIS	15
EEM-1: LIGHTING AND LIGHTING CONTROLS	15
EEM-2: ENVELOPE IMPROVEMENTS	16
EEM-3: PNEUMATIC TO DDC CONTROLS	21
EEM-4: HEATING AND COOLING PLANT UPGRADES	24
EEM-5: SOLAR THERMAL HEAT RECOVERY OPPORTUNITIES	36
EEM-6: OUTDOOR AIR ENERGY RECOVERY OPPORTUNITIES	39
EEM-7: KITCHEN HOOD CONTROLS	40
EEM-8: STEAM TRAP REPLACEMENT	44
EEM-9: SOLAR PANEL ARRAY	46
CONCLUSIONS	49
ESTIMATED INCENTIVES	
INCENTIVE PROGRAMS	50
ADDITIONAL CONSIDERATIONS	54
APPENDIX	57
CALCULATIONS	58
BUDGET PRICING	91
PHOTOGRAPHS AND EQUIPMENT LIST	107

EXECUTIVE SUMMARY

This Energy Plan is intended to investigate and evaluate Energy Conservation Measures for Cortland Enlarged School District Buildings, including the Junior Senior High School, Randall Middle School, Barry Primary School, Smith Intermediate School and District Office / Bus Garage. M/E Engineering, P.C. performed a site inspection on October 21, 2021. For the purposes of this study, existing HVAC, lighting, electrical, domestic hot water and envelope systems were surveyed. The walk-through entailed observing existing systems and their operations, including obtaining equipment nameplate data, reviewing drawings, discussing concerns of the building owner, and verifying operational schedules. Several Energy Conservation Measures have been evaluated, and are summarized below.

EEM No.	Energy Efficiency Measure Description	Annual Electric Savings [kWh]	Electric Peak Demand Savings [kW]	Annual Electric Cost Savings [\$]	Annual Natural Gas Savings [therms]	Annual Natural Gas Cost Savings [\$]	Total Energy Consumption Savings (mmBtu)	Total Annual Cost Savings [\$]	Estimated EEM Cost [\$] (total)	Simple Payback [Years]
1	Lighting and Lighting Controls	12,938	3.78	\$981	-382	-\$182	5.92	\$799	\$48,137	60.3
2	Envelope Improvements	11,875	2.92	\$901	5,166	\$2,464	557.13	\$3,365	\$3,636,521	1080.8
3	Occupied / Unoccupied Controls	8,799	1.12	\$667	0	\$0	30.03	\$667	\$90,000	134.9
4a	Install High Efficiency Boiler	0	0.00	\$0	22,500	\$10,732	2250.00	\$10,732	\$495,150	46.1
4b	Install Ground Source Heat Pump (GSHP)	-685,849	121.43	-\$52,014	90,000	\$42,928	6659.20	-\$9,086	\$4,085,000	-449.6
5	Solar Thermal Heat Recovery Opportunities	0	0.00	\$0	651	\$311	65.14	\$311	\$53,716	172.9
6	Outdoor Air Energy Recovery Opportunities	400	-0.72	\$30	9	\$4	2.27	\$35	\$14,407	416.1
7	Kitchen Hood Controls	5,550	0.33	\$421	1,658	\$791	184.71	\$1,212	\$14,070	11.6
9	Solar PV	2,057,442	1,725.00	\$156,034	0	\$0	7022.05	\$156,034	\$4,140,000	26.5

Table 1: JR/SR High School - Energy Efficiency Measure Summary

Table 2: Randall Middle School - Energy Efficiency Measure Summary

EEM No.	Energy Efficiency Measure Description	Annual Electric Savings [kWh]	Electric Peak Demand Savings [kW]	Annual Electric Cost Savings [\$]	Annual Natural Gas Savings [therms]	Annual Natural Gas Cost Savings [\$]	Total Energy Consumption Savings (mmBtu)	Total Annual Cost Savings [\$]	Estimated EEM Cost [\$] (total)	Simple Payback [Years]
2	Envelope Improvements	11,274	0.91	\$972	2,260	\$1,285	264.47	\$2,258	\$1,172,471	519.4
7	Kitchen Hood Controls	2,405	0.16	\$207	658	\$374	73.97	\$581	\$13,504	23.2
9	Solar PV	268,909	225.00	\$23,194	0	\$0	917.79	\$23,194	\$540,000	23.3

CORTLAND ENLARGED CITY SCHOOL DISTRICT NYSERDA P-12 SCHOOLS: GREEN AND CLEAN ENERGY SOLUTIONS

M/E ENGINEERING, P.C. NOVEMBER 19, 2021

EEM No.	Energy Efficiency Measure Description	Annual Electric Savings [kWh]	Electric Peak Demand Savings [kW]	Annual Electric Cost Savings [\$]	Annual Natural Gas Savings [therms]	Annual Natural Gas Cost Savings [\$]	Total Energy Consumption Savings (mmBtu)	Total Annual Cost Savings [\$]	Estimated EEM Cost [\$] (total)	Simple Payback [Years]
2	Envelope Improvements	11,433	1.44	\$969	3,233	\$1,675	362.33	\$2,643	\$1,807,535	683.8
3	Occupied / Unoccupied Controls	8,799	1.12	\$745	0	\$0	30.03	\$745	\$50,000	67.1
4a	Install High Efficiency Steam Boiler	0	0.00	\$0	5,357	\$2,775	535.68	\$2,775	\$138,975	50.1
4b	Convert to High Efficiency Hot Water Boilers & Distribution	0	0.00	\$0	10,714	\$5,550	1071.36	\$5,550	\$1,995,150	359.5
4c	Install Central Ground Source Heat Pump (GSHP) System	-230,249	4.53	-\$19,508	32,141	\$16,650	2428.24	-\$2,858	\$3,690,000	-1291.0
4d	Install Terminal Ground Source Heat Pump (GSHP) System	-230,249	4.53	-\$19,508	32,141	\$16,650	2428.24	-\$2,858	\$3,250,000	-1137.1
5	Solar Thermal Heat Recovery Opportunities	0	0.00	\$0	300	\$155	29.96	\$155	\$24,792	159.7
7	Kitchen Hood Controls	2,878	0.16	\$244	877	\$454	97.50	\$698	\$13,504	19.3
8	Steam Trap Replacement	0	0.00	\$0	4,999	\$2,590	499.93	\$2,590	\$2,800	1.1
9	Solar PV	262,398	220.00	\$22,232	0	\$0	895.56	\$22,232	\$528,000	23.7

Table 3: Barry Primary School - Energy Efficiency Measure Summary

Table 4: Smith Intermediate School - Energy Efficiency Measure Summary

EEM No.	Energy Efficiency Measure Description	Annual Electric Savings [kWh]	Electric Peak Demand Savings [kW]	Annual Electric Cost Savings [\$]	Annual Natural Gas Savings [therms]	Annual Natural Gas Cost Savings [\$]	Total Energy Consumption Savings (mmBtu)	Total Annual Cost Savings [\$]	Estimated EEM Cost [\$] (total)	Simple Payback [Years]
2	Envelope Improvements	0	1.27	\$0	2,926	\$1,511	292.60	\$1,511	\$1,604,315	1061.7
3	Occupied / Unoccupied Controls	8,799	1.12	\$766	0	\$0	30.03	\$766	\$50,000	65.3
4a	Install High Efficiency Boiler	0	0.00	\$0	5,356	\$2,766	535.55	\$2,766	\$138,975	50.2
4b	Convert to Condensing Hot Water Boilers & Distribution	0	0.00	\$0	10,711	\$5,531	1071.10	\$5,531	\$1,995,150	360.7
4c	Install Central Ground Source Heat Pump (GSHP) System	-231,509	2.59	-\$20,148	32,141	\$16,598	2423.94	-\$3,550	\$3,690,000	-1039.4
4d	Install Terminal Ground Source Heat Pump (GSHP) System	-231,413	4.53	-\$20,140	32,141	\$16,598	2424.27	-\$3,542	\$3,250,000	-917.6
5	Solar Thermal Heat Recovery Opportunities	0	0.00	\$0	300	\$155	29.96	\$155	\$24,792	160.2
7	Kitchen Hood Controls	2,878	0.16	\$251	877	\$453	97.50	\$703	\$13,504	19.2
8	Steam Trap Replacement	0	0.00	\$0	4,999	\$2,582	499.93	\$2,582	\$2,800	1.1
9	Solar PV	215,126	180.00	\$18,723	0	\$0	734.23	\$18,723	\$432,000	23.1

Table 5: District Offices/Bus Garage - Energy Efficiency Measure Summary

EEM No.	Energy Efficiency Measure Description	Annual Electric Savings [kWh]	Electric Peak Demand Savings [kW]	Annual Electric Cost Savings [\$]	Annual Natural Gas Savings [therms]	Annual Natural Gas Cost Savings [\$]	Total Energy Consumption Savings (mmBtu)	Annual	Estimated EEM Cost [\$] (total)	Simple Payback [Years]
2	Envelope Improvements	1,754	0.52	\$157	1,684	\$1,210	174.35	\$1,367	\$621,662	454.8
4a	Air Source Heat Pump (VRF)	-53,919	0.71	-\$4,821	673	\$483	-116.77	-\$4,338	\$121,400	-28.0
4b	Install Ground Source Heat Pump (GSHP) System	-92,559	-391.68	-\$8,276	12,053	\$8,663	889.38	\$387	\$472,050	1219.7
9	Solar PV	208,727	175.00	\$18,664	0	\$0	712.39	\$18,664	\$420,000	22.5

CORTLAND ENLARGED CITY SCHOOL DISTRICT NYSERDA P-12 SCHOOLS: GREEN AND CLEAN ENERGY SOLUTIONS

Several of the energy efficiency measures evaluated for this project would improve the comfort and energy usage of the buildings. Kitchen hood controls and steam trap replacement are recommend since the payback for these measures is typically less than 20 years and will improve the energy efficient of the building. Heating and cooling plant upgrades are viable options, with the geothermal portion supporting NYS electrification and de-carbonization goals. We would encourage the implementation of Photovoltaic power generation to help offset the increased electrical demand, however the land availability may reduce the potential for production.

The majority of these measures show a long payback. This is due to a variety of reasons, the foremost being that full replacement (in lieu of incremental) and measure specific infrastructure upgrades have been included in the cost analysis. If we were to consider or compare to a code compliant replacement, and consider only incremental cost, the paybacks would be much lower. In addition, the operating hours are relatively limited due to the building type of K-12 schools. Additionally, the GSHP measures include the addition of cooling to areas that may have not been cooled previously, which includes a cost premium and an energy penalty. If cooling is desired, it would make the GSHP measures more viable. Lastly, the cost of natural gas vs electric per unit of energy is relatively low. For example, the district has a cost of \$5.17/kbtu of natural gas and \$23.25/kbtu electric. Leveraging incentive programs will offset the first cost and ultimately reduce the payback of the project measures as well.

NYSERDA PROJECT SUMMARY SHEET

				PRO FOR: CORTLA	JECT SU			TRICT			STATE OF	
			BAS	ELINE ENER	GY SUMM	IARY - JR	SR HIGH	SCHOOL				
	Electric (kWh)	Natural Gas (therms)	#2 Oil (gallons	#4 Oil (gallons)	#6 Oil (gallons)	Steam (Ibs.)	Propane (gallons)	Coal (tons)	Other (MMBtu)	Total Bas (MM		
Baseline Energy Use	2,074,344	101,815	0	0	0	0	0	0	0	17,2	59.2	
Average Utility Rate	\$0.08	\$0.48	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Total Ani	5)	
Baseline Annual Cost	\$157,316	\$48,564	N/A	N/A	N/A	N/A	N/A	N/A	N/A	\$20	5,880	
			EN	ERGY SAVIN	GS SUMM	ARY - JR/	SR HIGH S	SCHOOL				
Measure	Description		Measure Status ¹	Savings	Elec Supply Savings (kWh)	Demand Savings (KW)	Fuel Savings (MMBtu)	Energy Savings to Total Baseline Use (%) ³	Annual Cost Savings	Cost Savings to Total Annual Cost (%) ⁴	Project Cost	Simple Payback (Years)
EEM-1 Lighting and L	<u> </u>	ols	NR	NGas	12,938	4	5.9	0.3%	\$799	0.4%	\$48,137	60.3
EEM-2 Envelope Impr	ovements		NR	NGas	11,875	3	557.1	3.5%	\$3,365	1.6%	\$3,636,521	1080.8
EEM-3 Occupied / Ur	noccupied Cor	ntrols	NR	NGas	8,799	1	30.0	0.3%	\$667	0.3%	\$90,000	134.9
EEM-4a Install High E	Efficiency Boil	er	NR	NGas	0	0	2,250.0	13.0%	\$10,732	5.2%	\$495,150	46.1
EM-4b Install Ground Sou	Irce Heat Pump	(GSHP)	NR	NGas	-685,849	121	6,659.2	25.0%	-\$9,086	-4.4%	\$4,085,000	-449.6
EM-5 Solar Thermal Heat	Recovery Oppo	rtunities	NR	NGas	0	0	65.1	0.4%	\$311	0.2%	\$53,716	172.9
EM-6 Outdoor Air Energy	Recovery Opp	ortunities	NR	NGas	400	-1	2.3	0.0%	\$35	0.0%	\$14,407	416.1
EM-7 Kitchen Hood	Controls		R	NGas	5,550	0	184.7	1.2%	\$1,212	0.6%	\$14,070	11.6
EM-9 Solar PV			R	NGas	2,057,442	1,725	7,022.0	81.4%	\$156,034	75.8%	\$4,140,000	26.5
				TOTAL (AII):	1,411,154	1,854	16,776	125.1%	\$164,068	79.7%	\$12,577,001	76.7
		TOTA	L (Recom	nended Only):	2,062,992	1,725	7,207	82.5%	\$157,246	76.4%	\$4,154,070	26.4
Measure Status I Implemented R Recommended RS Further Study Recommended RN NcR Recommended RME Recommended Mitually Exclusive to Recommended RME Recommended Mitually Exclusive to Recommended RNE Recommended Mitually Exclusive to Recommended	ive	CII2 CII4 CII6 Steam LPG	Bectric B Natural Gas k #2 Oi ti #4 Oi # #6 Oi # District Steam # Propane \$	IMBtu Conversion Factor tu 1,000,000 Wh 0,003412 verme 0,1 Z gallon 0,139 I gallon 0,1467 S gallon 0,15 Baam Ibo 0,0015 Baam Ibo 0,0015	savings fromm ³ Energy/Savings ⁴ Cost Savings to Instructions: * Fillin the light b * Energy savings	ultiple fuel source s to Total Fuel Bas o Total Annual Cos lue cells, as appro s must be presente	eline Use is a comp tis a comparison o priate. White cells v d as savings at the	warison of the total of the total of the total annual of the total annual of will auto-calculate.	ect the predominant i electric & fuel savin ost savings to the tr meter(s), not at the	gs to the total base otal baseline annua individual building	eline energy use al energy cost	
		Coal Other		PG gallon 0.0915 paitons 24			onversion factors ires, as necessary		tab, as necessary			

PROJECT SUMMARY SHEET

FOR: CORTLAND ENLARGED CITY SCHOOL DISTRICT

	BASELINE ENERGY SUMMARY - RANDALL MIDDLE SCHOOL														
		Electric (kWh)	Natural Gas (therms)	#2 Oil (gallons)	#4 Oil (gallons)	#6 Oil (gallons)	Steam (Ibs.)	Propane (gallons)	Coal (tons)	Other (MMBtu)	Total Baseline Use (MMBtu)				
Ī	Baseline Energy Use	271,436	28,494	0	0	0	0	0	0	0	3,775.5				
	Average Utility Rate	\$0.09	\$0.57	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Total Annual Cost (\$)				
ſ	Baseline Annual Cost	\$23,412	\$16,204	N/A	N/A	N/A	N/A	N/A	N/A	N/A	\$39,616				

ENERGY SAVINGS SUMMARY - RANDALL MIDDLE SCHOOL

							_			
		Fuel	Elec	tric	E.J.	Energy	A	Cost		0
Measure Description	Measure Status ¹	Savings Type ²	Supply Savings (kWh)	Demand Savings (kW)	Fuel Savings (MMBtu)	Savings to Total Baseline Use (%) ³	Annual Cost Savings	Savings to Total Annual Cost (%) ⁴	Project Cost	Simple Payback (Years)
EEM-2 Envelope Improvements	NR	NGas	11,274	1	264.5	8.0%	\$2,258	5.7%	\$1,172,471	519.4
EEM-7 Kitchen Hood Controls	R	NGas	2,405	0.2	74.0	2.2%	\$581	1.5%	\$13,504	23.2
EEM-9 Solar PV	R	NGas	268,909	225.0	917.8	48.6%	\$23,194	58.5%	\$540,000	23.3
	TOTAL (AII):	206,796	226	1,256	52.0%	\$26,033	65.7%	\$1,725,975	66.3	
TOTAL	TOTAL (Recommended Only)					50.8%	\$23,775	60.0%	\$553,504	23.3

CORTLAND ENLARGED CITY SCHOOL DISTRICT NYSERDA P-12 SCHOOLS: GREEN AND CLEAN ENERGY SOLUTIONS

PROJECT SUMMARY SHEET

FOR: CORTLAND ENLARGED CITY SCHOOL DISTRICT

BASELINE ENERGY SUMMARY - BARRY PRIMARY SCHOOL Natural #6 Oil Total Baseline Use Electric #2 Oil #4 Oil Steam Propane Coal Other Gas (gallons) (MMBtu) (MMBtu) (kWh) (gallons) (gallons) (gallons) (lbs.) (tons) (therms) 268,170 48,841 0 0 0 0 0 0 0 5,799.1 Baseline Energy Use Total Annual Cost \$0.08 \$0.52 N/A N/A N/A N/A N/A Average Utility Rate N/A N/A (\$) \$22,721 \$25,301 \$48,022 Baseline Annual Cost N/A N/A N/A N/A N/A N/A N/A

ENERGY SAVINGS SUMMARY - BARRY PRIMARY SCHOOL

		Fuel	Elec	tric	Fuel	Energy Savings	Annual	Cost Savings		Simple
Measure Description	Measure Status ¹	Savings Type ²	Supply Savings (kWh)	Demand Savings (kW)	Savings (MMBtu)	to Total Baseline Use (%) ³	Cost Savings	to Total Annual Cost (%) ⁴	Project Cost	Payback (Years)
EEM-2 Envelope Improvements	NR	NGas	11,432.8	1.4	362.3	6.9%	\$2,643	5.5%	\$1,807,535	683.8
EEM-3 Occupied / Unoccupied Controls	NR	NGas	8,798.5	1.1	30.0	1.0%	\$745	1.6%	\$50,000	67.1
EEM-4a Install High Efficiency Steam Boiler	NR	NGas	0.0	0.0	535.7	9.2%	\$2,775	5.8%	\$138,975	50.1
EEM-4b Convert to High Efficiency Hot Water Boilers & Distribution	NR	NGas	0.0	0.0	1,071.4	18.5%	\$5,550	11.6%	\$1,995,150	359.5
EEM-4c Install Central Ground Source Heat Pump (GSHP)	NR	NGas	-230,248.9	4.5	2,428.2	28.3%	-\$2,858	-6.0%	\$3,690,000	-1291.0
EEM-4d Install Terminal Ground Source Heat Pump (GSHP)	NR	NGas	-230,248.9	4.5	2,428.2	28.3%	-\$2,858	-6.0%	\$3,250,000	-1137.1
EEM-5 Solar Thermal Heat Recovery Opportunities	NR	NGas	0.0	0.0	30.0	0.5%	\$155	0.3%	\$24,792	159.7
EEM-7 Kitchen Hood Controls	R	NGas	2,878.4	0.2	97.5	1.9%	\$698	1.5%	\$13,504	19.3
EEM-8 Steam Trap Replacement	R	NGas	0.0	0.0	499.9	8.6%	\$2,590	5.4%	\$2,800	1.1
EEM-9 Solar PV	R	NGas	262,398.0	220.0	895.6	30.9%	\$22,232	46.3%	\$528,000	23.7
	TOTAL (AII):	-174,990	232	8,379	134.2%	\$31,672	66.0%	\$11,500,756	363.1	
TOTAL	TOTAL (Recommended Only						\$25,520	53.1%	\$544,304	21.3

PROJECT SUMMARY SHEET FOR: CORTLAND ENLARGED CITY SCHOOL DISTRICT

BASELINE ENERGY SUMMARY - SMITH INTERMEDIATE SCHOOL Natural #2 Oil #4 Oil #6 Oil Other Total Baseline Use Electric Steam Propane Coal Gas (kWh) (gallons) (gallons) (gallons) (lbs.) (gallons) (tons) (MMBtu) (MMBtu) (therms) 225,599 50,056 0 0 0 0 5,775.3 Baseline Energy Use 0 0 0 **Total Annual Cost** Average Utility Rate \$0.09 \$0.52 N/A N/A N/A N/A N/A N/A N/A (\$) Baseline Annual Cost \$19,634 \$25,850 N/A N/A N/A N/A N/A N/A N/A \$45,484

ENERGY SAVINGS SUMMARY - SMITH INTERMEDIATE SCHOOL

		Final	Elec	tric		Energy		Cost		0. 1
Measure Description	Measure Status ¹	Fuel Savings Type ²	Supply Savings (kWh)	Demand Savings (kW)	Fuel Savings (MMBtu)	Savings to Total Baseline Use (%) ³	Annual Cost Savings	Savings to Total Annual Cost (%) ⁴	Project Cost	Simple Payback (Years)
EEM-2 Envelope Improvements	NR	NGas	0.0	1.3	292.6	5.1%	\$1,511	3.3%	\$1,604,315	1061.7
EEM-3 Occupied / Unoccupied Controls	NR	NGas	8,798.5	1.1	30.0	1.0%	\$766	1.7%	\$50,000	65.3
EEM-4a Install High Efficiency Steam Boiler	NR	NGas	0.0	0.0	535.6	9.3%	\$2,766	6.1%	\$138,975	50.2
EEM-4b Convert to High Efficiency Hot Water Boilers & Distribution	NR	NGas	0.0	0.0	1,071.1	18.5%	\$5,531	12.2%	\$1,995,150	360.7
EEM-4c Install Central Ground Source Heat Pump (GSHP)	NR	NGas	-231,509.2	2.6	2,423.9	28.3%	-\$3,550	-7.8%	\$3,690,000	-1039.4
EEM-4d Install Terminal Ground Source Heat Pump (GSHP)	NR	NGas	-231,412.9	4.5	2,424.3	28.3%	-\$3,542	-7.8%	\$3,250,000	-917.6
EEM-5 Solar Thermal Heat Recovery Opportunities	NR	NGas	0.0	0.0	30.0	0.5%	\$155	0.3%	\$24,792	160.2
EEM-7 Kitchen Hood Controls	R	NGas	2,878.4	0.2	97.5	1.9%	\$703	1.5%	\$13,504	19.2
EEM-8 Steam Trap Replacement	R	NGas	0.0	0.0	499.9	8.7%	\$2,582	5.7%	\$2,800	1.1
EEM-9 Solar PV	R	NGas	215,126.0	180.0	734.2	25.4%	\$18,723	41.2%	\$432,000	23.1
	TOTAL (AII):	-236,119	190	8,139	127.0%	\$25,644	56.4%	\$11,201,536	436.8	
TOTAL	TOTAL (Recommended Only)					35.9%	\$22,008	48.4%	\$448,304	20.4

CORTLAND ENLARGED CITY SCHOOL DISTRICT NYSERDA P-12 SCHOOLS: GREEN AND CLEAN ENERGY SOLUTIONS

TOTAL (AII):

TOTAL (Recommended Only):

64.004

208,727

		BA				GED CITY S	SCHOOL DI		ARAGE		STATE	
	Electric (kWh)	Natural Gas (therms)	#2 Oil (gallons)	#4 Oil (gallons)	#6 Oil (gallons)	Steam (Ibs.)	Propane (gallons)	Coal (tons)	Other (MMBtu)	Total Bas (MM	eline Use Btu)	
Baseline Energy Use	211,847	12,393	0	0	0	0	0	0	0	1,90	62.1	
Average Utility Rate	\$0.09	\$0.72	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Total Anı (nual Cost	
Baseline Annual Cost	\$18,943	\$8,908	N/A	N/A	N/A	N/A	N/A	N/A	N/A	\$27	,851	
		E	NERGY S	AVINGS SU	MMARY -	DISTRICT	OFFICES	/ BUS GA	RAGE			
Measure	Measure Description			Fuel Savings Type ²	Elec Supply Savings (kWh)	tric Demand Savings (KW)	Fuel Savings (MMBtu)	Energy Savings to Total Baseline Use (%) ³	Annual Cost Savings	Cost Savings to Total Annual Cost (%) ⁴	Project Cost	Simple Payback (Years)
EEM-2 Envelope Impr			NR	NGas	1,754	1	174.3	9.2%	\$1,367	4.9%	\$621,662	454.8
EEM-4a Air Source H	1.1	/	NR NR	NGas	-53,919	1	-116.8	-15.3%	-\$4,338	-15.6%	\$121,400	-28.0
	b Install Ground Source Heat Pump (GSHP)			NGas	-92,559	-392	889.4	29.2%	\$387	1.4%	\$472,050	1219.7
EEM-9 Solar PV			R	NGas	208,727	175	712.4	72.6%	\$18,664	67.0%	\$420,000	22.5

-215

175

1.659

712

95.7%

72.6%

\$16,080

\$18,664

57.7% \$1.635,112

\$420,000

67.0%

101.7

22.5

PROJECT OVERVIEW

The overall goal of this work plan is to complete a comprehensive analysis of the Cortland School District's buildings to identify options for energy improvements including upgrading / replacing the building HVAC systems, and to quantify the energy and cost impact of implementing the measures. This study is intended to focus on eligible areas of study under the NYSERDA P-12 Schools: Green and Clean Energy Solutions program, NYSERDA PON 4157, which consists of the investigation of opportunities to reduce energy and achieve carbon savings via load reduction and load shifting, and conversion to carbon free fuel. The study includes energy conservation measure analysis and strategic carbon footprint reduction planning, the integration of renewable generation, and the feasibility of incorporating clean heating and cooling technologies. An additional objective is for the district to make use of the study as a roadmap to aid in identifying and planning for potential future capital projects, including potential clean energy projects. These services will include calculating the annual energy savings associated with various energy conservation measures, determining an estimated first cost, simple payback, estimated maintenance impact, and basic feasibility associated with each measure.

CONTACT SHEET

Buildings

Junior Senior High School 8 Valley View Drive Cortland, New York

Randall Middle School 31 Randall Street Cortland, New York

Barry Primary School 20 Raymond Ave Cortland, New York

Smith Intermediate School 33 Wheeler Avenue Cortland, New York

District Office/Bus Garage 1 Valley View Drive Cortland, New York

NYSERDA Representative

Tim Curry Contractor Efficiency Planning & Engineering, TRC NYSERDA - Independent Contractor 17 Columbia Circle Albany, NY 12203-6399 P: 518-862-1090 x3215 F: 347-852-1363 Tim.Curry@nyserda.ny.gov

Owner

Mr. Mark Krypel Director Of Facilities Cortland Enlarged City School District 1 Valley View Drive Cortland, NY 13045 P: 607-758-4100 x1049 mkrypel@cortlandschools.org

Primary Energy Consultant

Melanie Stachowiak PE - Partner M/E Engineering, P.C. 60 Lakefront Blvd, Suite 320 Buffalo, NY 14202 (716) 845-5092 x1207 mgstachowiak@meengineering.com

Robert Reid PE - Project Engineer M/E Engineering, P.C.

M/E Reference 211078.00

300 Trolley Boulevard Rochester, NY 14606 (585) 288-5590 rmreid@meengineering.com

Krista Wayne - Energy Engineer M/E Engineering, P.C. 60 Lakefront Blvd, Suite 320 Buffalo, NY 14202 (716) 845-5092 kewayne@meengineering.com

EXISTING CONDITIONS

Jr/Sr High School

The Jr/Sr High School is a three-story structure of approximately 208,000 gross square feet. There are two above-grade floors and a basement. The original building was built in 1964, and there have been various additions and renovations to the building over time with the latest 2017 capital improvement project including a renovation of the auditorium completed in 2020. The building contains one auditorium, two gymnasiums, offices, classrooms, cafeteria, kitchen, and support spaces (electrical/mechanical, storage, corridor, restroom, etc.).

The building construction is generally masonry with limited insulation, a brick façade, and EPDM roofing. The building has operable windows with a combination of single and double paned glazing panels and aluminum frames. Most windows have been replaced, but not all. No thermal scans have been done to investigate for envelope problem areas. Typical operating hours are Monday-Friday 7AM-4PM with staff arriving early, reduced occupancy and hours of operation in the summer months (summer school), and extended hours for evening and weekend events.

The lighting is a combination of fluorescent and LED with vacancy and occupancy controls in the majority of the building and manual switches in other areas (approximately 20% left to convert - cafeteria, stairwells, library, as well as the outdoor field lighting). The LED lighting is controlled by Enlighted Controls. The electrical service has been replaced under the last project.

The HVAC systems generally consist of air handling units with hot water heat, chilled water cooling, and hot water reheat (1998 vintage). There are some unit ventilators, unit heaters, convectors, and perimeter radiation. Split A/C units serve select areas such as computer labs offices and interior classrooms. Heat is provided via hot water natural gas boilers (12,247 kbtu Cleaver Brooks boiler, 1998 vintage). Chilled water provided by a Trane water cooled chiller (2017 vintage) paired with an Evapco cooling tower on the roof. Variable speed drives have been installed on most equipment. Domestic hot water is provided by a series of instantaneous natural gas Rinnai heaters installed under the last EPC. Storage for domestic hot water is 1986 vintage. Plumbing fixtures have a combination of manual and automatic/metered trim and flush valves. Booster pumps are used to boost city pressure. The dust collector is in need of replacement. A direct digital control building management system is present in the building. The building utilizes day/night/weekend/holiday scheduling for thermostats. The age of the systems in the building varies as many capital improvement and energy performance contract projects were performed over a number of years.

Randall Middle School

The Randall Middle School is a three-story structure (basement, first floor, second floor) of approximately 52,500 gross square feet. The original building was built in 1926, and there have been various additions and renovations to the building over time with the latest capital improvement projects occurring in 2014. The building contains a cafeteria, a gymnasium, offices, classrooms, cafeteria, kitchen, and support spaces (electrical/mechanical, storage, corridor, restroom, etc.).

The building construction is generally masonry with limited insulation, a brick façade, and EPDM roofing. The building has operable windows with a combination of single and double paned glazing panels and aluminum frames. Some glazing is original to the building and some has been replaced. Exterior doors are in need of replacement. Typical operating hours are Monday-Friday 8AM-5PM with staff arriving early, reduced occupancy and hours of operation in the summer months, and extended hours for evening and weekend events.

CORTLAND ENLARGED CITY SCHOOL DISTRICT NYSERDA P-12 SCHOOLS: GREEN AND CLEAN ENERGY SOLUTIONS

The majority of lighting is LED with occupancy controls (wireless). There are some non-LED fixtures and some manual switching but the percentage is low. Exterior lighting is LED.

The HVAC systems generally consist of classroom unit ventilators with perimeter radiation, with an air handling units for the gymnasium, and Daikin split systems for computer labs and offices. Heat is provided via two Camus 3,000 kbtu hot water natural gas condensing boilers. The majority of the building is heated and ventilated only. The original system was steam and was replaced with hot water heat under a recent project. Domestic hot water is provided via a natural gas fired water heater with storage. Plumbing fixtures are a combination of manual and automatic (battery) / metered trim and flush valves. A number of toilets are elementary style which need to be replaced with standard size/height. A direct digital control building management system is present in the building. The age of the systems in the building varies widely as a number of capital improvement and energy performance contract projects were performed over a number of years.

Barry Primary School

The Barry Primary School (sister school to Smith Intermediate) is a one-story structure of approximately 65,800 gross square feet. The original building was built in 1957, and there have been various additions and renovations to the building over time with the latest capital improvement projects occurring in 2019. The building contains a café/auditorium, gymnasium, offices, classrooms, kitchen, and support spaces (electrical/mechanical, storage, corridor, restroom, etc.).

The building construction is generally masonry with limited insulation, a brick façade, some louvered-style paneling over unfaced concrete, and EPDM roofing. The building has operable windows with a combination of single and double paned glazing panels and aluminum frames. Exterior doors are in need of replacement. Typical operating hours are Monday-Friday 8AM-5PM with staff arriving early, reduced occupancy and hours of operation in the summer months, and extended hours for evening and weekend events.

The lighting is a combination of fluorescent and LED with occupancy controls and some manual switches. Exterior lighting is LED.

The HVAC systems generally consist of classroom unit ventilators that utilize transfer ducts to the corridor and gravity ventilators to exhaust air, with perimeter radiation in classrooms, and air handling units for select areas such as the café/auditorium, and gymnasium. These air handling units (3 in total) are 1957 vintage. Heat is provided via steam boilers that were replaced in 1992. The building is heated and ventilated only with the exception of select areas including a split A/C systems serving the offices and a computer lab. Domestic hot water is provided via a gas fired hot water heater, and plumbing fixtures are a combination of manual and automatic/metered trim and flush valves. A direct digital control building management system is present in the building. Pneumatics are also present, actively serving the AHU's some fintube, ad some cabinet unit heaters. This building also contains a "cluster" area which is a timber framed open concept learning space and is heated by hot water heat with a heat exchanger and duplex pump set off the building's steam system.

Smith Intermediate School

The Smith Intermediate School (sister school to Barry Primary School) is a one-story structure of approximately 56,400 gross square feet. The original building was built in 1957, and there have been various additions and renovations to the building over time with the latest capital improvement projects occurring in 2019. The building contains a café/auditorium, gymnasium, offices, classrooms, kitchen, and support spaces (electrical/mechanical, storage, corridor, restroom, etc.).

CORTLAND ENLARGED CITY SCHOOL DISTRICT NYSERDA P-12 SCHOOLS: GREEN AND CLEAN ENERGY SOLUTIONS

The building construction is generally masonry with limited insulation, a partial brick façade, some wood paneling and unfaced concrete, and EPDM roofing. The building has operable windows with a combination of single and double paned glazing panels and aluminum frames. Exterior doors are in need of replacement. Typical operating hours are Monday-Friday 8AM-5PM with staff arriving early, reduced occupancy and hours of operation in the summer months, and extended hours for evening and weekend events.

The lighting is a combination of fluorescent and LED with occupancy controls and some manual switches (hallway and exterior lighting are in need of replacement).

The HVAC systems generally consist of classroom unit ventilators that utilize transfer ducts to the corridor and gravity ventilators to exhaust air, with perimeter radiation in classrooms, and air handling units for select areas such as the café/auditorium, and gymnasium. These air handling units (3 in total) are 1957 vintage. Heat is provided via steam boilers original to the building. The building offices do not have air conditioning as this building's occupancy was intended for 10 months out of the year. With staff now expected for 12 months, air conditioning will be desired. The building is heated and ventilated only with the exception of select areas including a split A/C systems serving a computer lab. Domestic hot water is provided via a gas fired hot water heater, and plumbing fixtures are a combination of manual and automatic/metered trim and flush valves. A direct digital control building management system is present in the building. Pneumatics are also present, actively serving the AHU's some fintube, ad some cabinet unit heaters.

District Offices/Bus Garage

The District Offices and bus garage is a two-story structure of approximately 19,500 gross square feet. The original building was built in 1970. The building contains offices, bus garage, maintenance area, and support spaces (electrical/mechanical, storage, corridor, restroom, etc.).

The building construction is steel framed with metal paneled insulated walls and a metal roof with insulation below the deck between the roof's structural members. The heat loss of the roof is apparent with the formation of ice dams and significant icicles in the winter months. The building has operable casement windows on the first floor with aluminum frames. Typical operating hours are Monday-Friday 6AM-6PM with reduced occupancy and hours of operation in the summer months, and extended hours for evening and weekend events.

The lighting is a combination of fluorescent and LED with some occupancy controls in certain areas and manual switches in other areas.

The HVAC systems serving the office area consist of a multizone air handling unit with three zones and heat pump split A/C systems for heating and cooling of select areas. There is also some hot water fintube heat. A natural gas fired hot water boiler provides hot water heat as needed. The bus garage utilizes overhead gas fired infrared heat. The boiler is oversized due to the addition of the infrared system and therefore tends to operate on low and cycle often. The garage has local CO sensing. Busses are occasionally run in the garage and the doors are propped open for ventilation (no vehicle capture systems). There is no mechanical means of ventilation for the garage area. Domestic hot water is provided via a natural gas fired water heater. A direct digital control building management system is present in the building. A pressure booster system is used to boost the city water pressure. VSDs were installed on the existing pressure booster system. A bus wash storage system is on site in the garage.

UTILITY ANALYSIS

Utility Rates

Utilities to the district are being delivered via National Grid and National Gas for electric and natural gas respectively. The utility rates utilized for the calculations are indicated in the summary table below which is based on utility bills. Due to low 2020-2021 occupancy, November 2018 - October 2019 utility bills were utilized for generating average combined rates for electric and natural gas below.

Nov 2018-October 2019		Gas			Elec		Total
Building	Therm	Cost	\$/therm	kwh	Cost	\$/kwh	Cost
JR/SR High School	101,815	\$48,564	\$ 0.4770	2,074,344	\$157,316	\$0.0758	\$205,880
Randall Middle School	28,494	\$16,204	\$ 0.5687	271,436	\$23,412	\$0.0863	\$39,616
Barry Primary School	48,841	\$25,301	\$ 0.5180	268,170	\$22,721	\$0.0847	\$48,022
Smith Intermediate School	50,056	\$25,850	\$ 0.5164	225,599	\$19,634	\$0.0870	\$45,484
District Offices/Bus Garage	12,393	\$8,908	\$ 0.7188	211,847	\$18,943	\$0.0894	\$27,851
Total	241,599	\$124,827	\$ 0.5167	3,051,396	\$242,026	\$0.0793	\$366,853

Table 6: Utility Rate Summary

Benchmarking

The calculated existing Energy Utilization Index (EUI) for the existing buildings are listed below. The national median EUI, according to Energy Star Portfolio Manager, for similar type buildings is 48.5 kBtu/sf for a K-12 school and 40.1 kBtu/sf for Mixed Use.

Nov 2018-October 2019	Floor Space	Energy Consumption	EUI
Building	square feet	kbtu	kbtu/sf
JR/SR High School	207,878	17,259,162	83.03
Randall Middle School	52,480	3,775,540	71.94
Barry Primary School	65,840	5,799,096	88.08
Smith Intermediate School	56,358	5,775,344	102.48
District Offices/Bus Garage	19,500	1,962,122	100.62
Total	402,056	34,571,263	85.99

Table 7: Benchmarking Summary

APPROACH / METHODOLOGY

The analysis to estimate annual energy consumption and cost was performed using NYS Technical Resource Manual (TRM) v 8.0 spreadsheet analysis unless otherwise noted below. Typically NYS Technical Resource Manual (TRM) 8.0 calculations often are more than adequate to address HVAC system comparisons so this was the traditional first choice. Alternatively, BIN data spreadsheet analysis could have been used where TRM was not appropriate i.e. additional detail and exceptional calculations, or a simplified eQuest whole building zoned block modeling for interactive measures or complex systems (i.e. hybrid system type not addressed by the TRM), with assumptions for components not yet designed. The intent is to capture the incremental savings of the measures identified for study.

The following energy conservation measures were evaluated:

- <u>EEM-1 Lighting and Lighting Controls</u> This measure includes the evaluation of replacing fixtures with LED lighting, and the addition of occupancy sensors.
- <u>EEM-2 Envelope Improvements</u> This measure included glazing upgrades, insulated metal panel upgrades, and roof upgrades. This measure required an inventory of existing glazing and frame types, insulated metal panel insulation thicknesses, and roof types and insulation thicknesses, and the associated square footages associated with each of these envelope components.
- <u>EEM-3 Occupied / Unoccupied Controls</u> This measure includes upgrading pneumatic controls to DDC, and implementing temperature setback (occupied and unoccupied). The buildings contain direct digital controls, however further investigation was performed and discussion with the District's control contractor to determine if all spaces are controlled by the digital control system and if occupied setbacks are in place.
- <u>EEM-4 Heating and Cooling Plant Upgrades</u> This measure investigates possible upgrades to improve plant efficiency. Ground or air source heat pump measures support NYS electrification and de-carbonization goals and is intended to provide the infrastructure to meet these future goals.
- <u>EEM-5 Solar Thermal Heat Recovery Opportunities</u> This measure explores the feasibility of using solar thermal panels to preheat outdoor air. The roofs are relatively unobstructed from the sun, with limited trees and adjacent structures tall enough to shade the roof. This provides potential space to roof mount solar thermal collectors. Alternatively, wall mount systems could also be an option.
- <u>EEM-6 Outdoor Air Energy Recovery Opportunities</u> The addition of enthalpy (heating and cooling) or sensible only (heating only) energy recovery cores to precondition outdoor air. There are a number of units not utilizing this technology and could provide a potential significant energy savings.
- <u>EEM-7 Kitchen Hood Controls</u> Heat sensors may be installed along with variable speed drives and interlocked fully modulating outdoor air dampers to allow for automatic operation of the hoods and variable airflow according to sensed temperature. This will reduce both fan power and the required outdoor air. The impact of this effect on the outdoor air volume of the cafeteria to ensure that the adjacent space continues to be adequately ventilated will be included in the study.
- <u>EEM-8 Steam Trap Replacement</u> Study to repair or replace non-functional, leaking or blowthrough traps. When steam passes through the traps, it reduces the heating effectiveness. This is a natural gas energy benefit. An inventory of the existing traps was gathered via existing drawings, discussions with facility staff, and onsite investigation.
- <u>EEM-9 Solar PV</u> The intent of this measure is to provide a preliminary overview of the anticipated physical size and required peak demand of a solar array after the energy consumption is reduced through the implementation of the energy conservation measures listed above. A spreadsheet analysis and industry standard tools (i.e. PV Watts) was utilized for this evaluation.

CORTLAND ENLARGED CITY SCHOOL DISTRICT NYSERDA P-12 SCHOOLS: GREEN AND CLEAN ENERGY SOLUTIONS

For each measure analyzed, the following has been provided:

- Measure Description. Brief description of each system, system comparison, and feasibility overview (i.e. pros / cons, project impact, etc.).
- Detailed annual energy and cost analysis complete with anticipated savings.
- High level budgetary order of magnitude opinion of probable construction cost using a combination of RS Means, project experience, and other industry standard methods. This includes a breakdown for equipment, material, and labor.
- Simplified annual maintenance costs estimated using RS Means Facilities Maintenance And Repair Costs as a guide. These will include the identification of differences between the HVAC systems only and will not identify all maintenance associated with the building.
- Simple payback of each measure.
- Measure reporting in tabular format utilizing NYSERDA's project summary template.

ENERGY ANALYSIS

EEM-1: LIGHTING AND LIGHTING CONTROLS

This measure is intended to include the evaluation of replacing fixtures with LED lighting, and the addition of occupancy sensors. An inventory of the existing light fixtures was performed, complete with an inventory of controls, space usage, square footage of rooms, and hours of operation in all spaces. This measure was performed for the JR/SR high school only, because the rest of the buildings have already been converted to 100% LED with occupancy/vacancy controls.

EEM-1: JR/SR High School, Lighting And Lighting Controls

The JR/SR High School's lighting is a combination of fluorescent and LED with vacancy and occupancy controls in the majority of the building and manual switches in other areas. Approximately 20% remains to be converted to LED, including the cafeteria, stairwells, library, as well as the outdoor field lighting. Replacing all existing fluorescent lighting with LED lighting technology provides energy savings by reducing the required input energy to obtain the same lighting levels. Typically outdoor field lighting does not have the operating hours to justify replacement based on energy savings.

Baseline Assumptions:

- Cafeteria: 0.50 W/SF lighting power density (LPD).
- Library: 0.95 W/SF lighting power density (LPD).
- Stairwells: 0.30 W/SF lighting power density (LPD).

Proposed Assumptions:

- Cafeteria: This was assumed to be a 40% improvement over existing conditions which is typical of LED conversions. This resulted in an LPD of 0.30 W/sf, a 10% credit for Occupancy Sensors resulted in an LPD of 0.27 W/sf.
- Library: This was assumed to be a 40% improvement over existing conditions which is typical of LED conversions. This resulted in an LPD of 0.57 W/sf and a 10% credit was taken for Occupancy Sensors resulting in an LPD of 0.51 W/sf.
- Stairwells: This was assumed to be a 40% improvement over existing conditions which is typical of LED conversions. This resulted in an LPD of 0.18 W/sf and a 10% credit was taken for Occupancy Sensors resulting in an LPD of 0.16 W/sf.

EEM No.	Energy Efficiency Measure Description	Electric	Electric Peak Demand Savings [kW]	Electric Cost Savings	Sawnas	Annual Natural Gas Cost Savings [\$]	Total Energy Consumption Savings [mmBtu]		Estimated EEM Cost [\$] (total)	Simple Payback [Years]
1	Lighting and Lighting Controls	12,938	3.78	\$981.18	-382	-\$182.40	5.92	\$798.78	\$48,137.26	60.3

The payback associated with providing high efficient LED lighting is 60 years without incentives. This measure is not recommended to be implemented. National Grid offers lighting incentives for LED fixtures that are listed are ENERGY Star or DLC listed.

EEM-2: ENVELOPE IMPROVEMENTS

EEM-2 JR/SR High School, Envelope Improvements - Roof, Windows

This measure is intended to include glazing upgrades, insulated metal panel upgrades, and roof upgrades. A detailed inventory of existing glazing and frame types, insulated metal panel insulation thicknesses, and roof types and insulation thicknesses, and the associated square footages associated with each of these envelope components. This measure addresses the replacement of the existing roof with a total of 6" of insulation and the replacement of single pane windows to double pane windows.

Baseline Assumptions:

- Built-up roof, 3" insulation, R=5
- Roof square footage calculated from plans, 140,000 sf
- Single pane window area approximated from site visit, 2,000 sf

Proposed Assumptions:

- Roof: 6 inches total of rigid insulation, R=5/inch, R=30 total
- Double pane window high performance windows, savings of 550 kWh/100SF and 62.3 therms/100SF for a school conditioned with AC and fuel heat per TRM

Values modeled the same in both:

- Roof square footage calculated from plans
- Cooling Efficiency 11.2 EER, 14.5 IPLV
- Heating Efficiency 80% Efficiency

Table 9: EEM-2 Summary - JR/SR High School

EEM	No. Energy Efficiency Measure Description	Annual Electric Savings [kWh]	Electric Peak Demand Savings [kW]	Electric Cost Savings	Annual Natural Gas Savings [therms]	Annual Natural Gas Cost Savings [\$]	Total Energy Consumption Savings [mmBtu]		Estimated EEM Cost [\$] (total)	Simple Payback [Years]
2	Envelope Improvements	11,875	2.92	\$900.59	5,166	\$2,464.09	557.13	\$3,364.69	\$3,636,521.20	1080.8

EEM-2 Randall Middle School, Envelope Improvements - Roof, Windows

This measure is intended to include glazing upgrades, insulated metal panel upgrades, and roof upgrades. A detailed inventory of existing glazing and frame types, insulated metal panel insulation thicknesses, and roof types and insulation thicknesses, and the associated square footages associated with each of these envelope components. This measure addresses the replacement of the existing roof with a total of 6" of insulation and the replacement of single pane windows to double pane windows.

Baseline Assumptions:

- Built-up roof, 3" insulation, R=5
- Roof square footage calculated from plans, 43,000 sf
- Single pane window area approximated from site visit, 2,000 sf

Proposed Assumptions:

- Roof: 6 inches total of rigid insulation, R=5/inch, R=30 total
- Double pane window high performance windows, savings of 550 kWh/100SF and 62.3 therms/100SF for a school conditioned with AC and fuel heat per TRM

Values modeled the same in both:

- Roof square footage calculated from plans
- Cooling Efficiency 11 EER, 14.2 IPLV
- Heating Efficiency 95% Efficiency

Table 10: EEM-2 Summary - Randall Middle School

EEM No.	Energy Efficiency Measure Description	Annual Electric Savings [kWh]	Electric Peak Demand Savings [kW]	Electric Cost Savings	Annual Natural Gas Savings [therms]	Annual Natural Gas Cost Savings [\$]	Total Energy Consumption Savings [mmBtu]		Estimated EEM Cost [\$] (total)	Simple Payback [Years]	
2	Envelope Improvements	11,274	0.91	\$972.38	2,260	\$1,285.16	264.47	\$2,257.54	\$1,172,470.94	519.4	

EEM-2 Barry Primary School, Envelope Improvements - Roof, Windows

This measure is intended to include glazing upgrades, insulated metal panel upgrades, and roof upgrades. A detailed inventory of existing glazing and frame types, insulated metal panel insulation thicknesses, and roof types and insulation thicknesses, and the associated square footages associated with each of these envelope components. This measure addresses the replacement of the existing roof with a total of 6" of insulation and the replacement of single pane windows to double pane windows.

Baseline Assumptions:

- Built-up roof, 3" insulation, R=5
- Roof square footage calculated from plans, 68,000 sf
- Single pane window area approximated from site visit, 2,000 sf

Proposed Assumptions:

- Roof: 6 inches total of rigid insulation, R=5/inch, R=30 total
- Double pane window high performance windows, savings of 550 kWh/100SF and 62.3 therms/100SF for a school conditioned with AC and fuel heat per TRM

Values modeled the same in both:

- Roof square footage calculated from plans
- Cooling Efficiency 11 EER, 14.2 IPLV
- Heating Efficiency 80% Efficiency

Table 11: EEM-2 Summary - Barry Primary School

EEM No.	Energy Efficiency Measure Description	Annual Electric Savings [kWh]	Electric Peak Demand Savings [kW]	Electric Cost Savings	Annual Natural Gas Savings [therms]	Annual Natural Gas Cost Savings [\$]	Total Energy Consumption Savings [mmBtu]		Estimated EEM Cost [\$] (total)	Simple Payback [Years]
2	Envelope Improvements	11,433	1.44	\$968.65	3,233	\$1,674.82	362.33	\$2,643.47	\$1,807,535.44	683.8

EEM-2 Smith Intermediate School, Envelope Improvements - Roof, Windows

This measure is intended to include glazing upgrades, insulated metal panel upgrades, and roof upgrades. A detailed inventory of existing glazing and frame types, insulated metal panel insulation thicknesses, and roof types and insulation thicknesses, and the associated square footages associated with each of these envelope components. This measure addresses the replacement of the existing roof with a total of 6" of insulation and the replacement of single pane windows to double pane windows.

Baseline Assumptions:

- Built-up roof, 3" insulation, R=5
- Roof square footage calculated from plans, 60,000 sf
- Single pane window area approximated from site visit, 2,000 sf

Proposed Assumptions:

- Roof: 6 inches total of rigid insulation, R=5/inch, R=30 total
- Double pane window high performance windows, savings of 550 kWh/100SF and 62.3 therms/100SF for a school conditioned with AC and fuel heat per TRM

Values modeled the same in both:

- Roof square footage calculated from plans
- Cooling Efficiency 11 EER, 14.2 IPLV
- Heating Efficiency 80% Efficiency

Table 12: EEM-2 Summary

EEM No.	Energy Efficiency Measure Description	Annual Electric Savings [kWh]	Electric Peak Demand Savings [kW]	Electric Cost Savings	Annual Natural Gas Savings [therms]	Annual Natural Gas Cost Savings [\$]	Total Energy Consumption Savings [mmBtu]		Estimated EEM Cost [\$] (total)	Simple Payback [Years]	
2	Envelope Improvements	0	1.27	\$0.00	2,926	\$1,511.05	292.60	\$1,511.05	\$1,604,314.80	1061.7	

EEM-2 District Offices/Bus Garage, Envelope Improvements - Roof, Windows

This measure is intended to include glazing upgrades, insulated metal panel upgrades, and roof upgrades. A detailed inventory of existing glazing and frame types, insulated metal panel insulation thicknesses, and roof types and insulation thicknesses, and the associated square footages associated with each of these envelope components. This measure addresses the replacement of the existing roof with a total of 8" of insulation and the replacement of single pane windows to double pane windows.

Baseline Assumptions:

- Metal roofing, 6" batt with vinyl backing vapor barrier, R-20
- Roof square footage calculated from plans, 24,000 sf
- Single pane window area approximated from site visit, 200 sf

Proposed Assumptions:

- 8" batt R=27
- Double pane window high performance windows, savings of 550 kWh/100SF and 62.3 therms/100SF for a school conditioned with AC and fuel heat per TRM

Values modeled the same in both:

- Roof square footage calculated from plans
- Cooling Efficiency 11 EER, 14.2 IPLV
- Heating Efficiency 80% Efficiency

Table 13: EEM-2 Summary - District Offices/Bus Garage

EEM No.	Energy Efficiency Measure Description	Electric	Electric Peak Demand Savings [kW]	Electric Cost Savings	Annual Natural Gas Savings [therms]	Annual Natural Gas Cost Savings [\$]	Total Energy Consumption Savings [mmBtu]		Estimated EEM Cost [\$] (total)	Simple Payback [Years]
2	Envelope Improvements	1,754	0.52	\$156.86	1,684	\$1,210.16	174.35	\$1,367.02	\$621,661.92	454.8

EEM-3: PNUEMATIC TO DDC CONTROLS

EEM-3 JR/SR High School, Pneumatic To DDC

Facility personnel have indicated that temperature setback is in place. The building contains pneumatic controls that serve approximately a half dozen air handling units. This measure is intended to identify and capture the energy savings associated with replacing the remaining pneumatic controls with Direct Digital Controls.

Baseline Assumptions:

 Air compressor: 80% loaded, 1 hp motor, 1 ACFM / minute, 80% motor efficiency

Proposed Assumptions:

• Assuming 15 control points per AHU at \$1K per point to upgrade to DDC

EEM No.	Energy Efficiency Measure Description	Annual Electric Savings [kWh]	Electric Peak Demand Savings [kW]	Electric Cost Savings	Annual Natural Gas Savings [therms]	Annual Natural Gas Cost Savings [\$]	Consumption Savings	Total Annual Cost Savings [\$]	Estimated EEM Cost [\$] (total)	Simple Payback [Years]
3	Pneumatic To DDC Controls	8,799	1.12	\$667.27	0	\$0.00	30.03	\$667.27	\$90,000.00	134.9

EEM-3 Barry Primary School, Pneumatic To DDC

Facility personnel explain that temperature setback is in place. The building contains pneumatic controls that serve some air handling equipment, fin tube radiation and cabinet unit heaters. This measure is intended to identify and capture the energy savings associated with replacing the remaining pneumatic controls with Direct Digital Controls.

Baseline Assumptions:

 Air compressor: 80% loaded, 1 hp motor, 1 ACFM / minute, 80% motor efficiency

Proposed Assumptions:

• Assuming 50 control points at \$1K per point to upgrade to DDC

EEM No.	Energy Efficiency Measure Description	Annual Electric Savings [kWh]	Electric Peak Demand Savings [kW]	Electric Cost Savings	Annual Natural Gas Savings [therms]	Annual Natural Gas Cost Savings [\$]	Consumption Savings	Total Annual Cost Savings [\$]	Estimated EEM Cost [\$] (total)	Simple Payback [Years]
3	Pneumatic To DDC Controls	8,799	1.12	\$745.47	0	\$0.00	30.03	\$745.47	\$50,000.00	67.1

Table 15: EEM-3 Summary - Barry Primary School

EEM-3 Smith Intermediate School, Pneumatic To DDC

Facility personnel explain that temperature setback is in place. The building contains pneumatic controls that serve some air handling equipment, fin tube radiation and cabinet unit heaters. This measure is intended to identify and capture the energy savings associated with replacing the remaining pneumatic controls with Direct Digital Controls.

Baseline Assumptions:

 Air compressor: 80% loaded, 1 hp motor, 1 ACFM / minute, 80% motor efficiency

Proposed Assumptions:

• Assuming 50 control points at \$1K per point to upgrade to DDC

EEM No.	Energy Efficiency Measure Description	Annual Electric Savings [kWh]	Electric Peak Demand Savings [kW]	Electric Cost Savings	Annual Natural Gas Savings [therms]	Annual Natural Gas Cost Savings [\$]	Consumption Savings	Total Annual Cost Savings [\$]	Estimated EEM Cost [\$] (total)	Simple Payback [Years]
3	Pneumatic To DDC Controls	8,799	1.12	\$765.74	0	\$0.00	30.03	\$765.74	\$50,000.00	65.3

Table 16: EEM-3 Summary - Smith Intermediate School

EEM-4: HEATING AND COOLING PLANT UPGRADES

This measure is intended to investigate possible upgrades to improve efficiency. Ground or air source heat pump measures support NYS electrification and de-carbonization goals and is intended to provide the infrastructure to meet these future goals.

These buildings utilize natural gas boilers. Barry and Smith have steam boilers and distribution systems. The JR/SR High School, Randall Middle, and the Bus Garage/District Offices utilize hot water boilers. The thermal efficiency of the steam boilers are likely less than 80%. The condensing hot water boilers vary with the return water temperature and firing rate, so it is possible that the hot water boilers may be operating at less than 90% efficiency. This measure is intended to review the energy savings associated with implementing a higher efficiency heating plant such as ground source heat pump technology or air source heat pumps.

The district has indicated that additional cooling is not desired with the exception of Smith Intermediate School where a request for cooling the offices is likely. The JR/SR High School utilizes chilled water cooling, and all buildings contain stand-alone split A/C cooling systems. This measure is intended to explore the feasibility of combining the existing systems to heat-pump type systems where the energy may be shared and the systems operate more efficiently.

For a GSHP well field, the typical is for closed loops at 400 ft deep, 6 inch diameter, 20 ft on center, and 2-2.5tons/well. Open loops (draw out of one, inject into another) are a possibility if there are significant amounts of ground water. These would be larger 8-10 inch diameter holes but likely not as deep. A third option for a shallower slinky design may be appropriate for smaller systems where horizontal space is available. A test well would assist in confirming well performance. There could be a potential for an unbalanced well field with loss of performance over time if the heating and cooling loads are not roughly similar, however to prevent this from occurring, the well field could be slightly oversized to compensate.

EEM-4 JR/SR High School, Heating and Cooling Plant Upgrades

EEM-4a: JR/SR High School, Install High Efficiency Boiler

This measure is to replace the hot water boiler with a higher efficiency natural gas fired boiler. The existing chiller will remain in use.

Baseline Assumptions:

Existing Boiler efficiency 80%, 12,500 MBH capacity

Proposed Assumptions:

• Proposed Boiler efficiency 95%, 12,500 MBH capacity

EEM No.	Energy Efficiency Measure Description	Annual Electric Savings [kWh]	Electric Peak Demand Savings [kW]	Electric Cost Savings	Annual Natural Gas Savings [therms]	Annual Natural Gas Cost Savings [\$]	Consumption Savings	Total Annual Cost Savings [\$]	Estimated EEM Cost [\$] (total)	Simple Payback [Years]
4a	Install High Efficiency Boiler	0	0.00	\$0.00	22,500	\$10,732.11	2250.00	\$10,732.11	\$495,150.00	46.1

Table 17: EEM-4a Summary - JR/SR High School

This measure is appears to have a long payback beyond the expected useful life of the equipment and therefore has been indicated as not recommended. Condensing boilers will likely have smaller footprint. 3 at 33.3% each for sufficient redundancy or 2 at 65%. Flue will need replacement but replacement will be smaller. Intake will be ducted for completely sealed combustion or air drawn from the room. To optimize the use of condensing boilers, the loop temperature will be reset.

EEM-4b: JR/SR High School, Install Ground Source Heat Pump (GSHP)

This measure is to replace the hot water boiler with a ground source heat pump (GSHP) that generates hot and chilled water and is connected to a geothermal well field. Existing chiller is not in need of replacement at this time but the geothermal field and GSHP equipment will allow for future transition.

Baseline Assumptions:

- Cooling Efficiency 11.2 EER, 14.5 IPLV, 500 Ton Capacity
- Heating Efficiency 80% Efficiency, 12,500 MBH Capacity

Proposed Assumptions:

Proposed GSHP efficiency 18 EER, 3.05 COP

EEM No.	Energy Efficiency Measure Description	Annual Electric Savings [kWh]	Electric Peak Demand Savings [kW]	Electric Cost Savings	Annual Natural Gas Savings [therms]	Annual Natural Gas Cost Savings [\$]	Total Energy Consumption Savings [mmBtu]		Estimated EEM Cost [\$] (total)	Simple Payback [Years]
4b	Install Ground Source Heat Pump (GSHP)	-685,849	121.43	-\$52,014.05	90,000	\$42,928.45	6659.20	-\$9,085.60	\$4,085,000.00	-449.6

Table 18: EEM-4b Summary

This measure does not payback. The reason to make the change would be solely to reduce carbon used in the building. The GSHP saves a substantial amount of energy, but still requires more cost to operate. At this this time, this is not recommended for this building. Hot water generated by water source units may be at a lower temperature than the existing units are currently operating. This may de-rate the units, so a calculation would need to be performed to determine if the existing coils and terminal units can operate at the lower temperatures.

EEM-4 Barry Primary School, Heating and Cooling Plant Upgrades

EEM-4a: Barry Primary School, Install High Efficiency Steam Boiler

This measure is to replace the steam boiler with a higher efficiency natural gas fired steam boiler.

Baseline Assumptions:

• Existing Boiler efficiency 75%, 4,185 MBH

Proposed Assumptions:

• Proposed Boiler efficiency 85%, 4,185 MBH

Table 19: EEM-4a Summary - Barry Primary School

EEM No.	Energy Efficiency Measure Description	Annual Electric Savings [kWh]	Electric Peak Demand Savings [kW]	Electric Cost Savings	Annual Natural Gas Savings [therms]	Annual Natural Gas Cost Savings [\$]	Consumption Savings	Total Annual Cost Savings [\$]	Estimated EEM Cost [\$] (total)	Simple Payback [Years]
4a	Install High Efficiency Steam Boiler	0	0.00	\$0.00	5,357	\$2,774.97	535.68	\$2,774.97	\$138,975.00	50.1

This measure is appears to have a long payback beyond the expected useful life of the equipment and therefore has been indicated as not recommended.

EEM-4b: Barry Primary School, Install High Efficiency Hot Water Boiler

This measure is to convert to natural gas condensing hot water boilers and heating system. This measure requires a full piping replacement.

Baseline Assumptions:

• Existing Boiler efficiency 75%, 4,185 MBH

Proposed Assumptions:

- Proposed Boiler efficiency 95%, 4,185 MBH
- Conversion between condensate pumping and hot water pumping not included in calculation.

EEM No.	Energy Efficiency Measure Description	Annual Electric Savings [kWh]	Electric Peak Demand Savings [kW]	Electric Cost Savings	Annual Natural Gas Savings [therms]	Annual Natural Gas Cost Savings [\$]	Total Energy Consumption Savings [mmBtu]		Estimated EEM Cost [\$] (total)	Simple Payback [Years]
4b	Convert to High Efficiency Hot Water Boilers & Distribution	0	0.00	\$0.00	10,714	\$5,549.94	1071.36	\$5,549.94	\$1,995,150.00	359.5

Table 20: EEM-4b Summary - Barry Primary School

This measure has a long payback beyond the expected useful life of the equipment and therefore has been indicated as not recommended. Condensing boilers will likely have smaller footprint. 3 at 33.3% each for sufficient redundancy or 2 at 65%. Flue will need replacement but replacement will be smaller. Intake will be ducted for completely sealed combustion or air drawn from the room. To optimize the use of condensing boilers, the loop temperature will be reset.

EEM-4c: Barry Primary School, Install Central Ground Source Heat Pump (GSHP) System

This measure is to replace the steam heating system with ground source heat pump (GSHP) that generates hot water and is connected to a geothermal field. This includes the replacement of the steam piping with hot water piping, and fintube and unit ventilator replacement. This will provide the option for chilled water for future cooling if desired. The well field will need to be oversized to account for the heating only load. This measure includes the replacement of (3) AHUs.

Baseline Assumptions:

- Cooling Load 168,000 BTU/h
- Heating Load 2,511,000 BTU/h
- Existing Cooling efficiency, EER: 11.2
- Existing Heating efficiency 80%

Proposed Assumptions:

- Proposed heat pump efficiency 18 EER, 3.05 COP
- 160 geothermal wells at 2.5 tons per well, oversized 50% due unbalanced heating and cooling load.

EEM	No. Energy Efficiency Measure Description	Annual Electric Savings [kWh]	Electric Peak Demand Savings [kW]	Electric Cost Savings	Annual Natural Gas Savings [therms]	Annual Natural Gas Cost Savings [\$]	Total Energy Consumption Savings [mmBtu]		Estimated EEM Cost [\$] (total)	Simple Payback [Years]
40	Install Central Ground Source Heat Pump (GSHP) System	-230,249	4.53	-\$19,508.09	32,141	\$16,649.83	2428.24	-\$2,858.26	\$3,690,000.00	-1291.0

Table 21: EEM-4c Summary

This measure has a long payback beyond the expected useful life of the equipment and therefore has been indicated as not recommended. Hot water generated by water source units may be at a lower temperature than the existing units are currently operating. This may de-rate the units, so a calculation would need to be performed to determine if the existing coils and terminal units can operate at the lower temperatures. A test well would assist in confirming well performance. The wells may be located under a parking lot and possibly coincide with the parking lot resurface. Grassy areas are also a possibility, though care should be taken to ensure the well field does not conflict with future land use. Cabinetry changes and abatement is not included in the estimated probable cost.

EEM-4d: Barry Primary School, Install Terminal Ground Source Heat Pump (GSHP) System

This measure is to replace the steam heating system with geothermal well field coupled with water to air source heat pumps. This includes replacement of the steam piping with heat pump loop piping as well as unit ventilator replacement with heat pumps. Units will be capable of cooling. The split A/C systems would also be replaced with water to air source heat pumps. This measure includes the replacement of (3) AHUs.

Baseline Assumptions:

- Cooling Load 168,000 BTU/h
- Heating Load 2,511,000 BTU/h
- Existing Cooling efficiency, EER: 11.2
- Existing Heating efficiency 80%

Proposed Assumptions:

- Proposed heat pump efficiency is 18 EER, 3.05 COP
- 160 geothermal wells at 2.5 tons per well, oversized 50% due unbalanced heating and cooling load.

EEM	No. Energy Efficiency Measure Description	Annual Electric Savings [kWh]	Electric Peak Demand Savings [kW]	Electric Cost Savings	Annual Natural Gas Savings [therms]	Annual Natural Gas Cost Savings [\$]	Total Energy Consumption Savings [mmBtu]		Estimated EEM Cost [\$] (total)	Simple Payback [Years]
4d	Install Terminal Ground Source Heat Pump (GSHP) System	-230,249	4.53	-\$19,508.09	32,141	\$16,649.83	2428.24	-\$2,858.26	\$3,250,000.00	-1137.1

Table 22: EEM-4d Summary - Barry Primary School

This measure has a long payback beyond the expected useful life of the equipment and therefore has been indicated as not recommended.

EEM-4 Smith Intermediate School, Heating and Cooling Plant Upgrades

EEM-4a: Smith Intermediate School - Install High Efficiency Steam Boiler

This measure is to replace the steam boiler with a higher efficiency natural gas fired steam boiler.

Baseline Assumptions:

• Existing Boiler efficiency 75%, 4,185 MBH

Proposed Assumptions:

• Proposed Boiler efficiency 85%, 4,185 MBH

Table 23: EEM-4a Summary - Smith Intermediate School

EEM No.	Energy Efficiency Measure Description	Annual Electric Savings [kWh]	Electric Peak Demand Savings [kW]	Electric Cost Savings	Annual Natural Gas Savings [therms]	Annual Natural Gas Cost Savings [\$]	Total Energy Consumption Savings [mmBtu]		Estimated EEM Cost [\$] (total)	Simple Payback [Years]
4a	Install High Efficiency Boiler	0	0.00	\$0.00	5,356	\$2,765.71	535.55	\$2,765.71	\$138,975.00	50.2

This measure is appears to have a long payback beyond the expected useful life of the equipment and therefore has been indicated as not recommended.

EEM-4b: Smith Intermediate School, Install High Efficiency Steam Boiler

This measure is to convert to natural gas condensing hot water boilers and heating system. This measure requires a full piping, coils, fintube, and other terminal unit replacement.

Baseline Assumptions:

• Existing Boiler efficiency 75%, 4,185 MBH

Proposed Assumptions:

- Proposed Boiler efficiency 95%, 4,185 MBH
- Conversion between condensate pumping and hot water pumping not included in calculation.

EEM No.	Energy Efficiency Measure Description	Electric	Electric Peak Demand Savings [kW]	Electric Cost Savings	Annual Natural Gas Savings [therms]	Annual Natural Gas Cost Savings [\$]	Consumption Savings	Total Annual Cost Savings [\$]	Estimated EEM Cost [\$] (total)	Simple Payback [Years]
4b	Convert to Condensing Hot Water Boilers & Distribution	0	0.00	\$0.00	10,711	\$5,531.41	1071.10	\$5,531.41	\$1,995,150.00	360.7

Table 24: EEM-4b Summary - Smith Intermediate School

This measure has a long payback beyond the expected useful life of the equipment and therefore has been indicated as not recommended.

EEM-4c: Smith Intermediate School - Install Central Ground Source Heat Pump (GSHP) System

This measure is to replace the steam heating system with ground source heat pump (GSHP) that generates hot water and is connected to a geothermal field. This includes the replacement of the steam piping with hot water piping, and fintube and unit ventilator replacement. This will provide the option for chilled water for future cooling if desired. The well field will need to be oversized to account for the heating only load. This measure includes the replacement of (3) AHUs.

Baseline Assumptions:

- Cooling Load 168,000 BTU/h
- Heating Load 2,511,000 BTU/h
- Existing Cooling efficiency, EER: 11.2
- Existing Heating efficiency 80%

Proposed Assumptions:

- Proposed heat pump efficiency 18 EER, 3.05 COP
- 160 geothermal wells at 2.5 tons per well, oversized 50% due unbalanced heating and cooling load.

EEM No.	Energy Efficiency Measure Description	Annual Electric Savings [kWh]	Electric Peak Demand Savings [kW]	Electric Cost Savings	Annual Natural Gas Savings [therms]	Annual Natural Gas Cost Savings [\$]	Total Energy Consumption Savings [mmBtu]		Estimated EEM Cost [\$] (total)	Simple Payback [Years]
4c	Install Central Ground Source Heat Pump (GSHP) System	-231,509	2.59	-\$20,148.37	32,141	\$16,598.20	2423.94	-\$3,550.16	\$3,690,000.00	-1039.4

Table 25: EEM-4c Summary - Smith Intermediate School

This measure has a long payback beyond the expected useful life of the equipment and therefore has been indicated as not recommended. Hot water generated by water source units may be at a lower temperature than the existing units are currently operating. This may de-rate the units, so a calculation would need to be performed to determine if the existing coils and terminal units can operate at the lower temperatures. A test well would assist in confirming well performance. The wells may be located under a parking lot and possibly coincide with the parking lot resurface. Grassy areas are also a possibility, though care should be taken to ensure the well field does not conflict with future land use. Cabinetry changes and abatement is not included in the estimated probable cost.

EEM-4d: Smith Intermediate School - Install Terminal Ground Source Heat Pump (GSHP) System

This measure is to replace the steam heating system with geothermal well field coupled with water to air source heat pumps. This includes replacement of the steam piping with heat pump loop piping as well as unit ventilator replacement with heat pumps. Units will be capable of cooling. The split A/C systems would also be replaced with water to air source heat pumps. This measure includes the replacement of (3) AHUs.

Baseline Assumptions:

- Cooling Load 168,000 BTU/h
- Heating Load 2,511,000 BTU/h
- Existing Cooling efficiency, EER: 11.2
- Existing Heating efficiency 80%

Proposed Assumptions:

- Proposed heat pump efficiency is 18 EER, 3.05 COP
- 160 geothermal wells at 2.5 tons per well, oversized 50% due unbalanced heating and cooling load.

Table 26: EEM-4d Summary - Smith Intermediate School

EEM No.	Energy Efficiency Measure Description	Annual Electric Savings [kWh]	Electric Peak Demand Savings [kW]	Electric Cost Savings	Annual Natural Gas Savings [therms]	Annual Natural Gas Cost Savings [\$]	Total Energy Consumption Savings [mmBtu]		Estimated EEM Cost [\$] (total)	Simple Payback [Years]
4d	Install Terminal Ground Source Heat Pump (GSHP) System	-231,413	4.53	-\$20,139.99	32,141	\$16,598.20	2424.27	-\$3,541.78	\$3,250,000.00	-917.6

This measure has a long payback beyond the expected useful life of the equipment and therefore has been indicated as not recommended. A test well would assist in confirming well performance. The wells may be located under a parking lot and possibly coincide with the parking lot resurface. Grassy areas are also a possibility, though care should be taken to ensure the well field does not conflict with future land use.

EEM-4 District Offices/Bus Garage

EEM-4a: Air Source Heat Pump (VRF)

This measure is to install a air source heat pump (VRF) system for the office areas in lieu of split systems, eliminating the existing AHU.

Baseline Assumptions:

- Cooling Load 72,000 BTU/h
- Heating Load 1,004,000 BTU/h
- Existing Cooling efficiency, EER: 11.2
- Proposed Assumptions:
 - Proposed heat pump efficiency is 13 EER at full load and 13.9 EER seasonal efficiency.

EEM No.	Energy Efficiency Measure Description	Annual Electric Savings [kWh]	Electric Peak Demand Savings [kW]	Electric Cost Savings	Annual Natural Gas Savings [therms]	Annual Natural Gas Cost Savings [\$]	Total Energy Consumption Savings [mmBtu]		Estimated EEM Cost [\$] (total)	Simple Payback [Years]
4a	Air Source Heat Pump (VRF)	-53,919	0.71	-\$4,821.33	673	\$483.45	-116.77	-\$4,337.88	\$121,400.00	-28.0

Table 27: EEM-4a Summary - District Offices/Bus Garage

This measure does not payback and is not recommended.

EEM-4b: Install Ground Source Heat Pump (GSHP) System

This measure is to replace the hot water heating system with geothermal well field coupled with water to water ground source heat pumps, generating hot/chilled/domestic water. Water to air heat pumps for the offices and other areas currently without hydronic heat.

Baseline Assumptions:

- Cooling Load 72,000 BTU/h
- Heating Load 1,004,000 BTU/h
- Existing Cooling efficiency, EER: 11.2
- Existing Heating efficiency 80%

Proposed Assumptions:

- Proposed heat pump efficiency is 18 EER, 3.05 COP
- 30 geothermal wells at 2.5 tons per well, oversized 50% due unbalanced heating and cooling load.

EEM No.	Energy Efficiency Measure Description	Annual Electric Savings [kWh]	Electric Peak Demand Savings [kW]	Electric Cost Savings	Annual Natural Gas Savings [therms]	Annual Natural Gas Cost Savings [\$]	Total Energy Consumption Savings [mmBtu]		Estimated EEM Cost [\$] (total)	Simple Payback [Years]
4b	Install Ground Source Heat Pump (GSHP) System	-92,559	-391.68	-\$8,276.45	12,053	\$8,663.47	889.38	\$387.02	\$472,050.00	1219.7

Table 28: EEM-4b Summary - District Offices/Bus Garage

This measure does not payback. The reason to make the change would be solely to reduce carbon used in the building. The GSHP saves a substantial amount of energy, but still requires more cost to operate. At this this time, this is not recommended for this building. A test well would assist in confirming well performance. The wells may be located under a parking lot and possibly coincide with the parking lot resurface. Grassy areas are also a possibility, though care should be taken to ensure the well field does not conflict with future land use.

EEM-5: SOLAR THERMAL HEAT RECOVERY OPPORTUNITIES

EEM-5: JR/SR High School, Solar Thermal Heat Recovery

The roofs are relatively unobstructed from the sun, with limited trees and adjacent structures tall enough to shade the roof. This provides potential space to roof mount solar thermal collectors. Alternatively, wall mounted systems could also be an option. The air is brought in through the perforated metal panels, which use sunlight to directly heat the air. Motorized dampers are used to bypass the panels during cooling. Because the solar energy requires no electricity input, thermal collectors reduce the load on the heating coils and reduce energy consumption.

Baseline Assumptions:

- AHUs available:
- RTU-1H, Kitchen make-up 6,000 cfm OA
- RTU-4H, Kitchen make-up 7,222 cfm OA

Proposed Assumptions:

- Solar thermal collectors located on nearby southwest facing gymnasium wall.
- Assumed 8 cfm/sf collector = 1,600 sf

Table 29: EEM-5 Summary - JR/SR High School

EEM No.	Energy Efficiency Measure Description	Annual Electric Savings [kWh]	Electric Peak Demand Savings [kW]	Electric Cost Savings	Annual Natural Gas Savings [therms]	Annual Natural Gas Cost Savings [\$]	Total Energy Consumption Savings [mmBtu]		Estimated EEM Cost [\$] (total)	Simple Payback [Years]
5	Solar Thermal Heat Recovery Opportunities	0	0.00	\$0.00	651	\$310.70	65.14	\$310.70	\$53,716.00	172.9

This measure is appears to have a long payback beyond the expected useful life of the equipment and therefore has been indicated as not recommended. The reason that this measure does not perform well is due to the relatively low number of operating hours. For example a 24-hour operating facility would have significantly more savings which would lower the payback.

EEM-5 Barry Primary School - Solar Thermal Heat Recovery

The roofs are relatively unobstructed from the sun, with limited trees and adjacent structures tall enough to shade the roof. This provides potential space to roof mount solar thermal collectors. Alternatively, wall mounted systems could also be an option. The air is brought in through the perforated metal panels, which use sunlight to directly heat the air. Motorized dampers are used to bypass the panels during cooling. Because the solar energy requires no electricity input, thermal collectors reduce the load on the heating coils and reduce energy consumption.

Baseline Assumptions:

- AHUs available:
- MAU-1B, Kitchen make-up assumed 6,000 cfm OA (nameplate capacity is 11,111 cfm max and 2,222 min)

Proposed Assumptions:

- Solar thermal collectors located on flat roof, south facing at 35°.
- Assumed 8 cfm/sf collector = 800 sf

EEM No.	Energy Efficiency Measure Description	Annual Electric Savings [kWh]	Electric Peak Demand Savings [kW]	Electric Cost Savings	Annual Natural Gas Savings [therms]	Annual Natural Gas Cost Savings [\$]	Consumption Savings	Total Annual Cost Savings [\$]	Estimated EEM Cost [\$] (total)	Simple Payback [Years]
5	Solar Thermal Heat Recovery Opportunities	0	0.00	\$0.00	300	\$155.20	29.96	\$155.20	\$24,792.00	159.7

Table 30: EEM-5 Summary - Barry Primary School

This measure is appears to have a long payback beyond the expected useful life of the equipment and therefore has been indicated as not recommended. The reason that this measure does not perform well is due to the relatively low number of operating hours. For example a 24-hour operating facility would have significantly more savings which would lower the payback.

EEM-5 Smith Intermediate School - Solar Thermal Heat Recovery

The roofs are relatively unobstructed from the sun, with limited trees and adjacent structures tall enough to shade the roof. This provides potential space to roof mount solar thermal collectors. Alternatively, wall mounted systems could also be an option. The air is brought in through the perforated metal panels, which use sunlight to directly heat the air. Motorized dampers are used to bypass the panels during cooling. Because the solar energy requires no electricity input, thermal collectors reduce the load on the heating coils and reduce energy consumption.

Baseline Assumptions:

- AHUs available:
- MAU-1S, Kitchen make-up assumed 6,000 cfm OA (nameplate capacity is 11,111 cfm max and 2,222 min)

Proposed Assumptions:

- Solar thermal collectors located on flat roof, south facing at 35°.
- Assumed 8 cfm/sf collector = 800 sf

Table 31: EEM-5 Summary- Smith Intermediate Scho	lo
--	----

EEM No.	Energy Efficiency Measure Description	Annual Electric Savings [kWh]	Electric Peak Demand Savings [kW]	Electric Cost Savings	Annual Natural Gas Savings [therms]	Annual Natural Gas Cost Savings [\$]	Total Energy Consumption Savings [mmBtu]		Estimated EEM Cost [\$] (total)	Simple Payback [Years]
5	Solar Thermal Heat Recovery Opportunities	0	0.00	\$0.00	300	\$154.72	29.96	\$154.72	\$24,792.00	160.2

This measure is appears to have a long payback beyond the expected useful life of the equipment and therefore has been indicated as not recommended. The reason that this measure does not perform well is due to the relatively low number of operating hours. For example a 24-hour operating facility would have significantly more savings which would lower the payback.

EEM-6: OUTDOOR AIR ENERGY RECOVERY OPPORTUNITIES

EEM-6 JR/SR High School - Outdoor Air Energy Recovery Opportunities

The addition of enthalpy (heating and cooling) or sensible only (heating only) energy recovery cores to precondition outdoor air. There are a number of units not utilizing this technology and could provide a potential significant energy savings.

Baseline Assumptions:

- AHU-8 Locker Room 5,000 CFM of outdoor air
- Cooling Efficiency: 11.2 EER
- Heating Efficiency: 80%

Proposed Assumptions:

• Run-around loop efficiency of 50%

EEM No.	Energy Efficiency Measure Description	Annual Electric Savings [kWh]	Electric Peak Demand Savings [kW]	Electric Cost Savings	Annual Natural Gas Savings [therms]	Annual Natural Gas Cost Savings [\$]	Total Energy Consumption Savings [mmBtu]		Estimated EEM Cost [\$] (total)	Simple Payback [Years]
6	Outdoor Air Energy Recovery Opportunities	400	-0.72	\$30.32	9	\$4.31	2.27	\$34.63	\$14,407.00	416.1

This measure has a long payback beyond the expected useful life of the equipment and therefore has been indicated as not recommended. The annual electric peak demand savings are negative because the increase in fan power exceeds the cooling electric power savings.

EEM-7: KITCHEN HOOD CONTROLS

EEM-7: JR/SR High School, Kitchen Hood Controls

EEM-7 JR/SR High School, Kitchen Hood Controls

The kitchen hoods currently are interlocked with the make-up air handling unit. Heat sensors may be installed along with variable speed drives and interlocked fully modulating outdoor air dampers to allow for automatic operation of the hoods and variable airflow according to sensed temperature. This will reduce both fan power and the required outdoor air. The impact of this effect on the outdoor air volume of the cafeteria to ensure that the adjacent space continues to be adequately ventilated will be included in this study.

Baseline Assumptions:

• The existing exhaust fan is (1.0) horsepower

Proposed Assumptions:

- Variable speed drive allows for 1968 kwh/hp unit savings
- Variable speed drive allows for 0.411 kW/hp unit savings
- 12,100 sqft of kitchen and cafeteria space, ESF_{cooling} 296, ESF_{heating} 13.7

Table 33: EEM-7 Summary - JR/SR High School

EEM No	Energy Efficiency Measure Description	Annual Electric Savings [kWh]	Electric Peak Demand Savings [kW]	Electric Cost Savings	Annual Natural Gas Savings [therms]	Annual Natural Gas Cost Savings [\$]	Consumption Savings	Total Annual Cost Savings [\$]	Estimated EEM Cost [\$] (total)	Simple Payback [Years]
7	Kitchen Hood Controls	5,550	0.33	\$420.88	1,658	\$790.69	184.71	\$1,211.57	\$14,070.00	11.6

EEM-7 Randall Middle School, Kitchen Hood Controls

The kitchen hoods currently are interlocked with the make-up air handling unit. Heat sensors may be installed along with variable speed drives and interlocked fully modulating outdoor air dampers to allow for automatic operation of the hoods and variable airflow according to sensed temperature. This will reduce both fan power and the required outdoor air. The impact of this effect on the outdoor air volume of the cafeteria to ensure that the adjacent space continues to be adequately ventilated will be included in this study.

Baseline Assumptions:

• The existing exhaust fan is (0.5) horsepower

Proposed Assumptions:

- Variable speed drive allows for 1968 kwh/hp unit savings
- Variable speed drive allows for 0.411 kW/hp unit savings
- 4,800 sqft of kitchen and cafeteria space, ESF_{cooling} 296, ESF_{heating} 13.7

EEM No.	Energy Efficiency Measure Description	Annual Electric Savings [kWh]	Electric Peak Demand Savings [kW]	Electric Cost Savings	Annual Natural Gas Savings [therms]	Annual Natural Gas Cost Savings [\$]	Total Energy Consumption Savings [mmBtu]		Estimated EEM Cost [\$] (total)	Simple Payback [Years]
7	Kitchen Hood Controls	2,405	0.16	\$207.42	658	\$373.96	73.97	\$581.38	\$13,504.00	23.2

Table 34: EEM-7 Summary - Randall Middle School

EEM-7 Barry Primary School, Kitchen Hood Controls

The kitchen hoods currently are interlocked with the make-up air handling unit. Heat sensors may be installed along with variable speed drives and interlocked fully modulating outdoor air dampers to allow for automatic operation of the hoods and variable airflow according to sensed temperature. This will reduce both fan power and the required outdoor air. The impact of this effect on the outdoor air volume of the cafeteria to ensure that the adjacent space continues to be adequately ventilated will be included in this study.

Baseline Assumptions:

• The existing exhaust fan is (0.5) horsepower

Proposed Assumptions:

- Variable speed drive allows for 1968 kwh/hp unit savings
- Variable speed drive allows for 0.411 kW/hp unit savings
- 6,400 sqft of kitchen and cafeteria space, ESF_{cooling} 296, ESF_{heating} 13.7

EEM No.	Energy Efficiency Measure Description	Electric	Electric Peak Demand Savings [kW]	Electric Cost Savings	Annual Natural Gas Savings [therms]	Annual Natural Gas Cost Savings [\$]	Total Energy Consumption Savings [mmBtu]		Estimated EEM Cost [\$] (total)	Simple Payback [Years]
7	Kitchen Hood Controls	2,878	0.16	\$243.88	877	\$454.21	97.50	\$698.08	\$13,504.00	19.3

Table 35: EEM-7 Summary - Barry Primary School

EEM-7 Smith Intermediate School, Kitchen Hood Controls

The kitchen hoods currently are interlocked with the make-up air handling unit. Heat sensors may be installed along with variable speed drives and interlocked fully modulating outdoor air dampers to allow for automatic operation of the hoods and variable airflow according to sensed temperature. This will reduce both fan power and the required outdoor air. The impact of this effect on the outdoor air volume of the cafeteria to ensure that the adjacent space continues to be adequately ventilated will be included in this study.

Baseline Assumptions:

• The existing exhaust fan is (0.5) horsepower

Proposed Assumptions:

- Variable speed drive allows for 1968 kwh/hp unit savings
- Variable speed drive allows for 0.411 kW/hp unit savings
- 6,400 sqft of kitchen and cafeteria space, ESF_{cooling} 296, ESF_{heating} 13.7

EEM No.	Energy Efficiency Measure Description	Annual Electric Savings [kWh]	Electric Peak Demand Savings [kW]	Electric Cost Savings	Annual Natural Gas Savings [therms]	Annual Natural Gas Cost Savings [\$]	Consumption Savings	Total Annual Cost Savings [\$]	Estimated EEM Cost [\$] (total)	Simple Payback [Years]	
7	Kitchen Hood Controls	2,878	0.16	\$250.51	877	\$452.80	97.50	\$703.31	\$13,504.00	19.2	

Table 36: EEM-7 Summary - Smith Intermediate School

EEM-8: STEAM TRAP REPLACEMENT

EEM-8 Barry Primary School, Steam Trap Replacement

The existing steam traps will be surveyed and units found to be non-functional, leaking, or blowthrough will be repaired or replaced. When steam passes through the traps, it reduces the heating effectiveness. This has a natural gas energy benefit.

Baseline Assumptions:

- Approximately (50) steam traps based on drawings.
- Estimated 10% steam trap failure rate
- Natural gas steam boiler, 75% efficiency

Proposed Assumptions:

• (5) steam traps repaired or replaced

Table 37: EEM-8 Summary - Barry Primary School

EEM No.	Energy Efficiency Measure Description	Annual Electric Savings [kWh]	Electric Peak Demand Savings [kW]	Electric Cost Savings	Annual Natural Gas Savings [therms]	Annual Natural Gas Cost Savings [\$]	Consumption Savings	Total Annual Cost Savings [\$]	Estimated EEM Cost [\$] (total)	Simple Payback [Years]
8	Steam Trap Replacement	0	0.00	\$0.00	4,999	\$2,589.76	499.93	\$2,589.76	\$2,800.00	1.1

EEM-8 Smith Intermediate School, Steam Trap Replacement

The existing steam traps will be surveyed and units found to be non-functional, leaking, or blowthrough will be repaired or replaced. When steam passes through the traps, it reduces the heating effectiveness. This has a natural gas energy benefit.

Baseline Assumptions:

- Approximately (50) steam traps based on drawings.
- Estimated 10% steam trap failure rate
- Natural gas steam boiler, 75% efficiency
- Proposed Assumptions:
 - (5) steam traps repaired or replaced

Table 38: EEM-8 Summary - Smith Intermediate School

EEM No.	Energy Efficiency Measure Description	Annual Electric Savings [kWh]	Electric Peak Demand Savings [kW]	Electric Cost Savings	Annual Natural Gas Savings [therms]	Annual Natural Gas Cost Savings [\$]	Total Energy Consumption Savings [mmBtu]		Estimated EEM Cost [\$] (total)	Simple Payback [Years]
8	Steam Trap Replacement	0	0.00	\$0.00	4,999	\$2,581.73	499.93	\$2,581.73	\$2,800.00	1.1

EEM-9: SOLAR PANEL ARRAY

Solar photovoltatics (PV) provide an additional opportunity to reduce the energy consumption and operation cost of the proposed facility. PV systems harvest the ambient solar energy and convert it to electricity, which can reduce the electricity required from the utility grid. When combined with a high-efficiency all-electric building, electricity purchases can even be eliminated. For cost-effectiveness, the building energy should be reduced as much as feasible before adding the PV.

A solar panel array can help a building become net-zero/carbon-neutral, in which all the energy or carbon consumption is offset with renewable energy sources. This is generally achievable with a high-performing all-electric building, such as one utilizing a high-efficiency heat pump or VRF system.

Relevant parameters:

- Roof-mounted, open rack, fixed solar array
- South-facing, 20° tilt
- Assumes premium efficiency solar panels (minimum 19% efficiency)

Solar panels generally provide a reasonable payback. Note that these calculations assume they are south facing panels; if they are oriented differently or are shaded by adjacent structures, more panels will likely be required. This analysis assumes no energy storage; in periods of low solar radiation, electricity from the grid will be required. However, during times that the PV produces more energy than is required for the building, the utility may buy back excess energy. If energy storage is utilized, it can help to soften the demand peaks. A regulatory review will be necessary to see if installation is permitted and if the grid will allow interconnection. These measures are recommended at this time, however, further study into the available roof areas and structural capacity, land, permits and grid interconnect is necessary.

EEM-9 JR/SR High School, Solar Panel Array

To match the existing annual consumption, a 1,725 kW array is required. The foot print would be approximately 95,000 square feet.

EEM No.	Energy Efficiency Measure Description	Annual Electric Savings [kWh]	Electric Peak Demand Savings [kW]	Electric Cost Savings	Annual Natural Gas Savings [therms]	Annual Natural Gas Cost Savings [\$]	Total Energy Consumption Savings [mmBtu]		Estimated EEM Cost [\$] (total)	Simple Payback [Years]
9	Solar PV	2,057,442	1725.00	\$156,034.17	0	\$0.00	7022.05	\$156,034.17	\$4,140,000.00	26.5

Table 39: EEM-9 Summary - JR/SR High School

EEM-9 Randall Middle School, Solar Panel Array

To match the existing annual consumption, a 225 kW array is required. The foot print would be approximately 12,500 square feet.

No.	Energy Efficiency Measure Description	Annual Electric Savings [kWh]	Electric Peak Demand Savings [kW]	Electric Cost Savings	Annual Natural Gas Savings [therms]	Annual Natural Gas Cost Savings [\$]	Consumption Savings	Total Annual Cost Savings [\$]	Estimated EEM Cost [\$] (total)	Simple Payback [Years]
	Solar PV	268,909	225.00	\$23,194.04	0	\$0.00	917.79	\$23,194.04	\$540,000.00	23.3

Table 40: EEM-9 Summary - Randall Middle School

This measure is recommended to be implemented.

EEM-9 Barry Primary School

EEM N

9

To match the existing annual consumption, a 220 kW array is required. The foot print would be approximately 12,100 square feet.

E	EM No.	Energy Efficiency Measure Description	Annual Electric Savings [kWh]	Electric Peak Demand Savings [kW]	Electric Cost Savings	Annual Natural Gas Savings [therms]	Annual Natural Gas Cost Savings [\$]	Total Energy Consumption Savings [mmBtu]		Estimated EEM Cost [\$] (total)	Simple Payback [Years]
	9	Solar PV	262,398	220.00	\$22,231.96	0	\$0.00	895.56	\$22,231.96	\$528,000.00	23.7

This measure is recommended to be implemented.

EEM-9 Smith Intermediate School, Solar Panel Array

To match the existing annual consumption, a 180 kW array is required. The foot print would be approximately 9,900 square feet.

EEM No.	Energy Efficiency Measure Description	Annual Electric Savings [kWh]	Electric Peak Demand Savings [kW]	Electric Cost Savings	Annual Natural Gas Savings [therms]	Annual Natural Gas Cost Savings [\$]	Total Energy Consumption Savings [mmBtu]		Estimated EEM Cost [\$] (total)	Simple Payback [Years]
9	Solar PV	215,126	180.00	\$18,722.53	0	\$0.00	734.23	\$18,722.53	\$432,000.00	23.1

EEM-9 District Offices/Bus Garage, Solar Panel Array

To match the existing annual consumption, a 180 kW array is required. The foot print would be approximately 9,900 square feet.

Table 43: EEM-9 Summary - District Offices/Bus Garage

EEM No.	Energy Efficiency Measure Description	Annual Electric Savings [kWh]	Electric Peak Demand Savings [kW]	Electric Cost Savings	Annual Natural Gas Savings [therms]	Annual Natural Gas Cost Savings [\$]	Total Energy Consumption Savings [mmBtu]		Estimated EEM Cost [\$] (total)	Simple Payback [Years]
9	Solar PV	208,727	175.00	\$18,664.01	0	\$0.00	712.39	\$18,664.01	\$420,000.00	22.5

CONCLUSION

Based on the findings of the study, we recommend pursing energy efficiency measures EEM-2 Kitchen Hood Controls, EEM-8 Steam Trap Replacement and EEM-9 Solar Panel Arrays. These measures will help improve the efficiency of building, reduce the carbon footprint and have a positive comfort impact on the occupants. We hope the findings of this report will assist you in making decisions about energy efficiency improvements in your facility.

ESTIMATED INCENTIVES

Estimated incentives available for geothermal systems at \$80/mmBtu of annual energy savings. Available through Con Edison, National Grid and NYSEG.

Measure				
ivieasul e				
EEM-4b: JR/SR High School, Install Ground Source Heat Pump (GSHP)	\$522,041			
EEM-4c: Barry Primary School, Install Central Ground Source Heat Pump (GSHP) System	\$191,955			
EEM-4d: Barry Primary School, Install Terminal Ground Source Heat Pump (GSHP) System	\$191,955			
EEM-4c: Smith Intermediate School, Install Central Ground Source Heat Pump (GSHP) System	\$191,680			
EEM-4d: Smith Intermediate School, Install Terminal Ground Source Heat Pump (GSHP) System	\$191,637			
EEM-4b: District Offices/Bus Garage, Install Ground Source Heat Pump (GSHP) System	\$70,224			

INCENTIVE PROGRAMS

NYSERDA P-12 PROGRAM - DESIGN INCENTIVES

- High needs district 100% funded by NYSERDA, up to \$250,000
- Design for high efficiency measures resulting in a 20% improvement (overall or per measure as appropriate)

NYSERDA NEW CONSTRUCTION PROGRAM

***Applicable to All-Electric Projects Only

Support Level 1 - First Look:

- For Carbon Neutral Ready projects of any square footage and at any design phase prior construction.
 - Projects greater than 15,000 square feet and in schematic design phase or earlier may transition to Support Level 2 upon completion of the First Look, provided the Applicant commits to a Carbon Neutral Ready or better design.
- Technical Support provided by a NYSERDA-approved Primary Energy Consultant:
 - Meet with the Applicant to review design phase plans or proposed equipment selections, and
 - Provide a summary of energy savings suggestions.
- NYSERDA contribution for Support Level 1:
 - Technical Support is provided at no cost to the Applicant.
 - Fixed fee schedule for Primary Energy Consultant:
 - Projects up to 10,000 SF \$1,500
 - Projects 10,001 to 30,000 SF \$3,000
 - Projects over 30,000 SF \$5,000

Support Level 2 Carbon Neutral Ready (>15,000 SF)

- Project must be all electric, including cooking, laundry, domestic hot water, etc. The only exception is an emergency generator.
- Energy Modeling, Analysis and Report:
 - Engage with the Applicant and project design team to identify, model and analyze potential energy savings and electrification opportunities. Include analysis of ventilation and related building envelope and HVAC system needs to optimize buildings to meet COVID-19 related health and safety guidance.
- Integrated Project Delivery:
 - Provide additional technical support for Applicants who incorporate and execute Integrated Project Delivery in the project design.
- Smart Buildings:
 - Provide additional technical support for Applicants who incorporate and execute a suite of Smart Building features in the project design and construction.
- Embodied Carbon:

- Suggest, evaluate and quantify embodied carbon reduction opportunities.
 Prepare and submit a separate report of the embodied carbon analysis to the Applicant and NYSERDA.
- NYSERDA Contribution:
 - NYSERDA will pay 100% of the technical support costs, including energy modeling and efficiency measure analysis, up to a maximum \$200,000.
 - For projects seeking to reduce embodied carbon by at least 20%, NYSERDA will
 pay an additional 10% of the Technical Support costs to identify and quantify
 strategies that reduce embodied carbon.
 - Incentive of \$2/sf if source energy is a least 15% less than a code-compliant baseline
- For more information: <u>Commercial New Construction Program NYSERDA</u>

NYS CLEAN HEAT PROGRAM

NYS Clean Heat Statewide Heat Pump Program

- Heat pump system options only. Must utilize heat pump for heating.
- Custom performance incentives per MMBtu saved, according to type and size of full load heating capacity OR per equipment if smaller sizes
- Must utilize NYSERDA-participating contractor or designer, subject to installation requirements
- For more information: <u>clean-heat-program-guide.pdf (coned.com)</u>

NY-SUN

NYSERDA NY-Sun Program:

- The NY-Sun program offers incentives and financing for NY businesses purchasing and installing solar panel systems.
- There are also NYS tax credits available, if eligible.
- Current incentives:
 - Non-residential (<200 kW): \$0.35/W
 - Commercial (>200 kW): CLOSED 5/20/2021
 - Incentives reduce over time after a certain number of projects are awarded
- To determine eligibility, you will need to work with a participating NY-Sun contractor:
 <u>Find a Commercial Solar Contractor NYSERDA</u>
- For more information about the program: NY-Sun NYSERDA

NYSERDA RETAIL ENERGY STORAGE

NYSERDA Retail Energy Storage Incentive Program (PON4112)

- This program provides financial incentives for new grid-connected energy storage systems up to 5 megawatts of power (5MW).
- Storage systems may be chemical, thermal or mechanical.
- Storage systems must be operated primarily for electric load management or load shifting to times more beneficial to the grid.
- Systems may be installed alone or paired with another distributed energy resource technology.
- To receive incentives, you will need to work with a participating contractor.
- For more information: <u>Retail Energy Storage Incentive Program (PON 4112)</u>

SOLAR TAX CREDITS

Federal Investment Tax Credit for Commercial Solar Photovoltaics

- This is a federal corporate income tax credit based on 10% of the cost of the solar PV system.
- For additional information: <u>www.energy.gov/eere/solar</u>

CON EDISON

Commercial and Industrial Program

- Two pathways for both gas and electric customers participating in the 2021 program year: the prescriptive path and the custom path.
- Prescriptive and custom incentives cannot exceed 70% of the customer's project cost for eligible measure(s) or 100% of each measure cost. Total incentives are capped at \$1,000,000 for electric projects and \$750,000 for gas projects, per account per year
- Commercial customers, over 100 kW average peak demand on a rolling 12-month basis, who pay into the EE Tracker are eligible for C&I incentives, excluding multifamily buildings. Commercial customers between 100-300 kW may also choose to participate with Con Edison through the Small Business (SMB) Program.
- For additional information : <u>Savings for Commercial and Industrial Customers | Con</u> <u>Edison // Savings for Your Small or Medium Business | Con Edison</u>

ELECTRIC VEHICLE CHARGING STATIONS

NYSERDA Charge Ready NY

- \$4,000 per charging port for Level 2 charging stations
- For additional information: NYSERDA Charge Ready NY
- ConEdison Electric Vehicle PowerReady Infrastructure
 - Two categories of equipment or infrastructure are eligible for incentives under the EV Make-Ready Program:
 - Utility-side Make-Ready Infrastructure: Utility electric infrastructure needed to connect and serve a new EV charger. This may include traditional distribution infrastructure such as step-down transformers, overhead service lines, and utility meters that will continue to be owned and operated by the utility.
 - Customer-side Make-Ready Infrastructure: EV equipment or infrastructure necessary to make a site ready to accept an EV charger that is owned by the charging station Developer, Equipment Owner, or Site Host. This electric infrastructure may include conductors, trenching, and panels needed for the EV charging station.
 - EV Charging in Disadvantaged Communities may be eligible for higher incentive level.
 - For additional information: <u>Electric Vehicle PowerReady Program | Con Edison</u>

NYS Electric Vehicle Recharging Property Tax Credit

- Credit the lesser of \$5,000 or 50% of the cost of property less any cost paid from the proceeds of grants
- For additional information: <u>NYS Electric Vehicle Recharging Property Tax Credit</u>

FEDERAL ENERGY-EFFICIENCY TAX DEDUCTION

179D Commercial Buildings Energy-Efficiency Tax Deduction

- \$1.80/sf deduction (adjusted annually) for property exceeding 50% energy savings utilizing the latest version of ASHRAE 90.1
- Partial deductions available for individual reductions for only envelope, HVAC/DHW, and lighting
- For additional information: <u>179D Commercial Buildings Energy-Efficiency Tax Deduction</u>

PACE

The property assessed clean energy (PACE) model is an innovative mechanism for financing energy efficiency and renewable energy improvements on private property. PACE programs exist for:

- <u>Commercial properties</u> (commonly referred to as Commercial PACE or C-PACE)
- Residential properties (commonly referred to as Residential PACE or R-PACE).

PACE programs allow a property owner to finance the up-front cost of energy or other eligible improvements on a property and then pay the costs back over time through a voluntary assessment. PACE assessments are attached to the property rather than an individual. PACE financing for clean energy projects is generally based on an existing structure known as a "land-secured financing district," often referred to as an assessment district, a local improvement district, or other similar phrase. In a conventional assessment district, the local government issues bonds to fund projects with a public purpose such as streetlights, sewer systems, or underground utility lines.

ADDITIONAL CONSIDERATIONS

Although the main considerations in selecting an HVAC system are typically energy and cost implications, there are several other factors at play.

Existing Useful Life of Equipment

A full life cycle cost analysis has not been performed as part of this study. However, each system has a different lifespan. For example, a rooftop unit has a relatively short expected useful life of 15 years before replacement becomes necessary, while a ground source heat pump can be expected to last 25 years.

Expected Useful Lifespan						
Equipment Description Years Equipment Description Years						
Lighting	15	Boiler	25			
Envelope	30	Ground Source Heat Pump	25			
Direct Digital Control Sys	25	Air Handling Unit	15			

In order to fully capture the replacement and the true cost of each system type, a full life cycle cost analysis may be warranted.

Carbon Reduction

Much of the motivation to reduce fossil fuel usage is to address climate change by reducing carbon and greenhouse gas emissions. New York State currently has one of the cleanest electric grids in the nation, and has goals of 70% renewable supply by 2030, and 100% by 2050. However, natural gas still remains less carbon intensive per unit of energy than electricity, due to the fossil fuels required to produce and distribute electricity, which is often counter-intuitive. With the New York's focus on renewable energy, that is likely to change, especially over the lifespan of equipment with long expected life.

Jr/Sr High School

Greenhouse Gas Emissions							
	Carbon	Savings vs. Baseline					
Tag	Consumption	Consun	nption				
	(mt CO ₂ e)	(mt CO ₂ e)	(%)				
BASELINE	1577						
EEM-1	4	1573	99.7%				
EEM-2	33	1544	97.9%				
EEM-3	4	1573	99.7%				
EEM-4A	119	1458	92.4%				
EEM-4B	114	1463	92.8%				
EEM-5	3	1574	99.8%				
EEM-6	0	1577	100.0%				
EEM-7	12	1566	99.3%				
EEM-9	1029	548	34.7%				

Randall Middle School

Greenhouse Gas Emissions											
	Carbon Savings vs. Baseline										
Tag	Consumption	Consun	nption								
	(mt CO ₂ e)	(mt CO ₂ e)	(%)								
BASELINE	287										
EEM-2	18	1560	98.9%								
EEM-3	5	1573	99.7%								
EEM-9	135	1443	91.5%								

Barry Primary School

Greenhouse Gas Emissions								
	Carbon	Savings vs. Baseline						
Tag	Consumption	Consun	nption					
	(mt CO ₂ e)	(mt CO ₂ e)	(%)					
BASELINE	393							
EEM-2	23	1555	98.6%					
EEM-3	4	1573	99.7%					
EEM-4A	28	1549	98.2%					
EEM-4B	57	1521	96.4%					
EEM-4C	51	1527	96.8%					
EEM-4D	51	1527	96.8%					
EEM-5	2	1576	99.9%					
EEM-7	6	1571	99.6%					
EEM-8	26	1551	98.3%					
EEM-9	131	1446	91.7%					

Smith Intermediate School

Greenhouse Gas Emissions										
	Carbon	Savings vs. Baseline								
Tag	Consumption	Consun	nption							
	(mt CO ₂ e)	(mt CO ₂ e)	(%)							
BASELINE	378									
EEM-2	16	1562	99.0%							
EEM-3	4	1573	99.7%							
EEM-4A	28	1549	98.2%							
EEM-4B	57	1521	96.4%							
EEM-4C	50	1527	96.8%							
EEM-4D	50	1527	96.8%							
EEM-5	2	1576	99.9%							
EEM-7	6	1571	99.6%							
EEM-8	26	1551	98.3%							
EEM-9	108	1470	93.2%							

District Offices/Bus Garage

Greenhouse Gas Emissions										
	Carbon	Saving Base								
Tag	Consumption	Consur	nption							
	(mt CO ₂ e)	(mt CO ₂ e)	(%)							
BASELINE	378									
EEM-2	10	1568	99.4%							
EEM-4A	-23	1601	101.5%							
EEM-4B	16	1562	99.0%							
EEM-9	104	1473	93.4%							

Utility Cost Inflation

New York State has aggressive carbon-reduction goals, which require the electrification of heating systems to succeed. One method of encouraging the switch from natural gas to electric heating in our climate is to provide financial incentives and penalties. Already, NYSERDA and the major utility companies have incentive programs to mitigate first costs. In the future, the economic incentives may migrate to utility rates themselves, in the form of electric rate subsidies or carbon taxes. For example, in 2018, Canada implemented a carbon tax based on consumption meant to penalize excessive fossil fuel use. While the future of energy is unknown, it is a possibility to consider.

Project Stage

This project is in study phase, prior to concept/schematic design, and as such, many assumptions and generalizations must be made to create the energy model. It is prudent to make conservative assumptions in order to avoid overstating energy savings or cost implications. As the design progresses, the models may be refined, and typically more energy savings are demonstrated.

M/E ENGINEERING, P.C. November 19, 2021

APPENDIX CALCULATIONS

All calculations generally follow NYS 8.0 Technical Resource Manual methods, unless noted.

M/E ENGINEERING, P.C. November 19, 2021

EEM-1: Lighting and Lighting Controls																
JR/SR High School																
Cafeteria		<u>Cafeteria</u>														
Proposed :		ΔkWh	=	units	x(W _{base}	-	Wee)/	1000	х	hrs _{op}	x(1	+	HVAC _c
School LPD	0.30 W/sf	ΔkWh	=	1	×(5250.0	-	2835.0)/	1000	х	2187	x(1	+	0.015
Interior hours from TRM	2,187	ΔkWh	=	5361												
HVAC _c	0.015															
HVAC _d	0.2	ΔkW	=	units	x(W _{base}	-	Wee)/	1000	x(1	+	HVAC _d)x	CF
HVAC _{ff}	-0.003	ΔkW	=	1	x(5250.0	-	2835.0)/	1000	x(1	+	0.2)x	0.54
Cafeteria wattage	3150 W	ΔkW	=	1.565												
Cafeteria wattage +10% credit for OS Controls	2835 W															
Existing:		ΔMMBtu	=	units	x(W _{base}	-	Wee)/	1000	х	hrs	х	HVAC _{ff}		
Assumed wattage/sf based on site visit observations	0.50 W/sf	ΔMMBtu	=	1	×(5250.0	-	2835.0)/	1000	х	2187	х	-0.003		
SF of Cafeteria	10500 SF	ΔMMBtu	=	-16												
baseline wattage	5250 W	∆therm	=	-158												
CF, coincidence factor	0.54															
Library		Library														
Proposed :		ΔkWh	=	units	×(W _{base}	-	Wee)/	1000	х	hrs _{op}	x(1	+	HVAC _c
Library LPD	0.57 W/sf	ΔkWh	=	1	- ×(6295.2	-	3399.4)/	1000	х	2187	x(1	+	0.015
Interior hours from TRM	2,187	ΔkWh	=	6428												
HVAC _c	0.015															
HVACd	0.2	ΔkW	=	units	×(W _{base}	-	Wee)/	1000	x(1	+	HVAC _d)x	CF
HVACtf	-0.003	ΔkW	=	1	×(6295.2	-	3399.4)/	1000	x(1	+	0.2)x	0.54
Library wattage	3777 W	ΔkW	=	1.876												
Library wattage +10% credit for OS Controls	3399 W															
Existing:		ΔMMBtu	=	units	×(W _{base}	-	Wee)/	1000	х	hrs	х	HVAC _{ff}		
Assumed wattage/sf based on site visit observations	0.95 W/sf	ΔMMBtu	=	1	×(6295.2	-	3399.4)/	1000	х	2187	х	-0.003		
SF of Library	6627 SF	ΔMMBtu	=	-19	_											
baseline wattage	6295 W	∆therm	=	-190												
CF, coincidence factor	0.54															
		0														
Stairwells		Stairwells			,					1000			,			10/40
Proposed :	0.40 M// (ΔkWh	=	units	x(W _{base}	-	Wee)/	1000	х	hrs _{op}	x(1	+	HVAC _c
Stairwell LPD	0.18 W/sf	ΔkWh	=	1	×(1125.0	•	607.5)/	1000	х	2187	x(1	+	0.015
Interior hours from TRM	2,187 0.015	ΔkWh	=	1149												
HVAC _c					,					1000	,			1.11/1.0	,	05
HVAC _d HVAC _{tt}	0.2	ΔkW ΔkW	=	units	x(W _{base}	-	W _{ee})/)/	1000	x(1	+	HVAC _d)x	CF
	-0.003		=	1	×(1125.0	-	607.5)/	1000	x(1	+	0.2)x	0.54
Stairwell wattage	675 W	ΔkW	=	0.335												
Stairwell wattage +10% credit for OS Controls	608 W				,					1000				1.0.4.0		
Existing:	0.00.11/1	∆MMBtu	=	units	x(W _{base}		Wee)/	1000	х	hrs	х	HVAC _{ff}		
Assumed wattage/sf based on site visit observations	0.30 W/sf	ΔMMBtu	=	1	×(1125.0		607.5)/	1000	х	2187	х	-0.003		
SF of Stairwells	3750 SF	ΔMMBtu	=	-3	4											
baseline wattage	1125 W	Δtherm	=	-34												
CF, coincidence factor	0.54				7											
		Total ∆kWh	=	12938												
		Total ∆kW	=	3.777	4											
		Δtherm	=	-382	4											

\$981.18

(\$182.40)

=

∆\$kWh

Δ\$ natural gas =

EEM-2: Envelope Improvements

JR/SR High School																					
Room Temp Setpoint Cooling	75 °F																				
OA Temp Setpoint Cooling	89 °F	Roof																			
Room Temp Setpoint Heating	70 °F	∆kWh _a	=(((Roof Uvalu	le _{base} x	Roof SF _{base})-(Roof Uvalue _{ee}	х	Roof SF _{ee}))x(Toutdoor, design	- T _{indoo}	r, setpoint	У	1000)x	EFLH _{cool}	/	IPLV		
OA Temp Setpoint Heating	0 °F	∆kWh _a	=(((0.050	x	140000)-(0.033	х	140000))x(89		75	V	1000)x	388	/	14.5		
		∆kWh _a	= 875																		
EFLH Cooling and Heating, Syracuse																					
High School, Cooling	388 EFLHcox	ΔkWh _{cool}	= 875																		
High School, Heating	960 EFLH _{bes}																				
high conool, ridding	000 21 21 16	∆kWh _a	=(((Roof Uvalu	le _{base} x	Roof SF _{base})-(Roof Uvalue _{ee}	~	Roof SE))v(Tindoor, setpoint	- T _{outde}		γ	1000)x	EFLH _{heat}	/	COPx3.412		
		∆kWh _a	=(((0.050)-(x	140000))x(Indoor, setpoint 70		oor, design	ý	1000)x	960	,	0.00		
		ΔkWh _a	= 0		140000)-(0.033	^	140000))^(70	•	0	y	1000)^	500	/	0.00		
Design ANYO TONE Of the other state of the design of		ΔKVVNa	= 0																		
Baseline NYS TRM - Code rooftop unit with chilled water		41.340																			
26.9 EER, 80% Efficiency		∆kWh _{heat}	= 0																		
											_	_									
		ΔkW_a	=(((Roof Uvalu)-(Roof Uvalue _{ee}				Toutdoor, design		r, setpoint	У	1000	y	EER				
		ΔkW_a	=(((0.050		140000)-(0.033	х	140000))x(89	-	75	y	1000	y	11.2				
	•	ΔkW_a	= 2.917																		
Roof																					
Roof SF Upper	140,000 SF	∆kW _{cool}	= 2.917																		
Existing: Built-Up roofing, 3" insulation R=5/inch	0.050 U																				
New: 6" Insulation, R=5/in, R-30 total	0.033 U	∆MMbtu _a	=(((Roof Uvalu	le _{base} x	Roof SF _{base})-(Roof Uvalueee	х	Roof SFee))x(Tindoor, setpoint	- Toutdo	oor, design)/	1000)x	EFLHheat	/	EffFuelHeat	/	1000
Cooling Efficiency	11.2 EER	∆MMbtu _a	=(((0.050	x	140000)-(0.033	х	140000))x(70		0	γ	1000)x	960	/	80%	/	1000
Cooling Efficiency	14.5 IPLV	∆MMbtu _a	= 196																		
Heating Elec Efficiency N/A	0.0 COP																				
Heating Fuel Efficiency	80% Eff	ΔMMBtu	= 196																		
······································		∆therm	= 1960																		
	0.446																				
	0.110	Total ΔkWh	= 875																		
		Total ΔkW	= 2.917																		
		Δtherm	= 1960																		
		Δ\$ kWh																			
		∆\$ natural gas	= \$934.8	9																	
MP - 4		Windows	05/40		(ALIME (400.0E	2.4	0555	,	0550												
<u>Windows</u>		ΔkWh	=(SF/10)x(SEER _{baseline}	/	SEER _{part})											
double pane windows w. AC w/ fuel heat Primary School		ΔkWh	=(2000 / 1)x(14 / 14)													
ΔkWh/100 SF		ΔkWh	=(20.00	· · · ·	(550)x(1.00)													
ΔkW/100 SF		ΔkWh	= 11000.	00																	
Δtherms/100 SF																					
SF		ΔkW	=(SF/10	,)x(EER _{baseline}	/	EERpart) x	CF										
CF		ΔkW	=(2000 / 1	,)x()x(0.477)											
SEERpar		ΔkW	=(20.00	·	.(0)x(1)x(0.477)											
EER _{par}	11.2	ΔkW	= 0.00																		
EFF _{par}	0.80																				
SEERbaseline	14	ΔMMbtu	=(SF/10)x(((Δtherms/100 SF	=)/	10)x(EER _{baseline}	/	EERpart)									
EER _{baseline}	11.2	ΔMMbtu	=(2000 / 1	00)x	((62.3)/	10)x(11.2 / 11.2)											
EFF _{baseline}	80%	ΔMMbtu	=(20.00)x	((62.3)/	10)x(1.00)											
		ΔMMbtu	= 124.6																		
		L																			
		ΔMMBtu	= 320.6																		
		Δtherm	= 3206																		
		Atterm	= 3206																		
		TOT	AL EEM-2																		
		Total ∆kWh																			
		Total ΔkW																			
		Δtherm	= 5166.0	0																	

Δ\$ kWh = \$900.59 Δ\$ natural gas = \$2,464.09

M/E ENGINEERING, P.C. November 19, 2021

Randall Middle School																				
Room Temp Setpoint Cooling	75 °F																			
		D /																		
OA Temp Setpoint Cooling	89 °F	Roof									-	-								
Room Temp Setpoint Heating	70 °F	∆kWh _a	=(((Roof Uvalue)-(Roof Uvalue _{ee}		Roof SF _{ee}		outdoor, design	- T _{indoor, setpoint})/	1000)x	EFLH _{cool}	/	IPLV		
OA Temp Setpoint Heating	0 °F	∆kWh _a ∆kWh _a	=(((0.050 = 274	x	43000)-(0.033	x	43000))x(89	- 75	у	1000)х	388	/	14.2		
EFLH Cooling and Heating, Syracuse	_																			
High School, Cooling	388 EFLH _{coo}	ΔkWh _{cool}	= 274																	
High School, Heating	960 EFLH _{hea}	t																		
		∆kWh _a	=(((Roof Uvalue	_{base} x	Roof SF _{base})-(Roof Uvalueee	х	Roof SFee))x(Tindoor, setpoint	- Toutdoor, design	У	1000)x	EFLH _{heat}	/	COPx3.412		
		∆kWh _a	=(((0.050	x	43000)-(0.033	x	43000))x(- 0	ý.	1000)x	960	/	0.00		
		∆kWh _a	= 0			<i>,</i> , ,				<i>"</i> (,		'					
Baseline NYS TRM - Code rooftop unit with DX		Latting	- 0																	
11 EER, 95% Efficiency		∆kWh _{heat}	= 0																	
TTEEK, 55% Eliiclency		Liktenheat	= 0																	
		ΔkWa	=(((Roof Uvalue		Deef CE)-(Deef Livelue		Deef CE	W(-	- Tindoor setpoint	γ	1000)/	EER				
		ΔkW _a		_{base} x			Roof Uvalueee						y V	1000 1000)/)/	11.0				
		-	=(((0.050	х	43000)-(0.033	х	43000))x(89	- 75	y	1000)/	11.0				
		ΔkW_a	= 0.912																	
Roof				_																
Roof SF Upper	43000 SF	∆kW _{cool}	= 0.912																	
Existing: Built-Up roofing, 3" insulation R=5	0.050 U																			
New: 6" Insulation, R=5/in, R-30 total	0.033 U	∆MMbtu _a	=(((Roof Uvalue	base X)-(Roof Uvalueee	х	Roof SFee			- Toutdoor, design)/	1000)х	EFLHheat	/	EffFuelHeat	/	1000
Cooling Efficiency	11 EER	∆MMbtu _a	=(((0.050	х	43000)-(0.033	х	43000))x(70	- 0)/	1000)х	960	/	95%	/	1000
Cooling Efficiency	14.2 IPLV	∆MMbtu _a	= 51																	
Heating Elec Efficiency N/A	0.0 COP																			
Heating Fuel Efficiency	95% Eff	ΔMMBtu	= 51																	
		Δtherm	= 507																	
		Total ∆kWh	= 274																	
		Total ∆kW	= 0.912																	
		Δtherm	= 507																	
		Δ\$ kWh	= \$23.60																	
		∆\$ natural gas	= \$288.29																	
		Ay natural gas	- \$200.23																	
		Windows																		
Windows		ΔkWh	=(SF/100)x	(ΔkWh/100 SF)x(SEER _{baseline}	/	SEERpart)										
double pane windows w. AC w/ fuel heat Primary School		ΔkWh	=(2000 / 10		·)×(Ś	OCCNpart	,										
ΔkWh/100 SF	550	ΔkWh	=(20.00 / 10)x)x(Ś												
ΔkW/100 SF	0	ΔkWh	1		(550)^(,												
		Δκινη	= 11000.00																	
Δtherms/100 SF	62.3																			
SF	2000	ΔkW	=(SF/100)x)x(. /	EER _{part}) x	CF									
CF	0.477	ΔkW	=(2000 / 10)x()x(0.477)										
SEER _{part}	14	ΔkW	=(20.00)x	(0)x(1)x(0.477)										
EER _{part}	11.2	ΔkW	= 0.00																	
EFFpart	95%																			
SEERbaseline	14	ΔMMbtu	=(SF/100)x((Δtherms/100 SF	=)/	10)x(EER _{baseline}	/	EERpart)								
EER _{baseline}	11.2	ΔMMbtu	=(2000 / 10	0)x((62.3)/	10		0.95 / 0.95											
EFF _{baseline}	95%	∆MMbtu	=(20.00)x(,)/	10)x(1.00)										
		ΔMMbtu	= 124.60			,	-	, (,										
		Ammou	- 124.00																	
		ΔMMBtu	= 175.29																	
			= 175.29 = 1753	_																
		Δtherm	= 1/53																	
				_																
		-	AL EEM-2																	
		Total ∆kWh	= 11274																	
		Total ΔkW	= 0.91	_																
		Δtherm	= 2259.89																	

Δ\$ kWh = \$972.38 Δ\$ natural gas = \$1,285.16

Barry Primary School		
Room Temp Setpoint Cooling	75 °F	
OA Temp Setpoint Cooling	89 °F	Roof
Room Temp Setpoint Heating	70 °F	ΔkWha =(((Roof Uvalue _{base} x Roof SF _{base})-(Roof Uvalue _{ee} x Roof SF _{ee}))x(T _{outdoor, design} - T _{indoor, setpoint})/ 1000)x EFLH _{cool} / IPLV
OA Temp Setpoint Heating	0 °F	ΔkWh _a =(((0.050 x 68000)-(0.033 x 68000))x(89 - 75)/ 1000)x 388 / 14.2
		$\Delta kWh_a = 433$
EFLH Cooling and Heating, Syracuse	388 EFLH _{cool}	$\Delta kWh_{cool} = 433$
High School, Cooling		$\Delta k W h_{cool} = 433$
High School, Heating	960 EFLH _{heat}	
		ΔkWh _a =(((Roof Uvalue _{base} x Roof SF _{base})-(Roof Uvalue _{ee} x Roof SF _{ee}))x(T _{indoor, seport} - T _{outdoor, design})/ 1000)x EFLH _{heat} / COPx3.412
		ΔkWh _a =(((0.050 x 68000)-(0.033 x 68000))x(70 - 0)/ 1000)x 960 / 0.00
Baseline NYS TRM - Code air handling unit		$\Delta kWh_{a} = 0$
11 EER, 80% Efficiency		$\Delta kWh_{heat} = 0$
TT EEK, 60% Eliiciency		
		ΔkWa =(((Roof Uvaluehase x Roof SFase)-{ Roof Uvalueee x Roof SFee))x(Toutoor, design - Tindoor, serpoint)/ 1000)/ EER
		ΔkWa =(((0.050 x 68000)-(0.033 x 68000))x(89 - 75)/ 1000)/ 11.0
		$\Delta k W_a = 1.442$
Roof		
Roof SF Upper	68000 SF	$\Delta k W_{\rm cool} = 1.442$
Existing: Built-Up roofing, 3" insulation R=5	0.050 U	—
New: 6" Insulation, R=5/in, R-30 total	0.033 U	ΔMMblu _a =(((Roof Uvalue _{base} x Roof SF _{base})-(Roof Uvalue _{ee} x Roof SF _{ee}))x(T _{indoor, sepont} - T _{outdoor, design})/ 1000)x EFLH _{heat} / Eff _{FuelHeat} / 100
Cooling Efficiency	11 EER	ΔΜΜbtu _a =(((0.050 x 68000)-(0.033 x 68000))x(70 - 0)/ 1000)x 960 / 80% / 100
Cooling Efficiency	14.2 IPLV	$\Delta MMbtu_a = 95$
Heating Elec Efficiency N/A	0.0 COP	
Heating Fuel Efficiency	80% Eff	Δ MMBtu = 95
		Δ therm = 952
		$Total \Delta k W h = 433$
		$\frac{\text{Total }\Delta kW}{1} = \frac{1.442}{1}$
		$\Delta therm = 952$ $\Delta $kWh = 36.67
		$\Delta \$ kWh = \36.67 $\Delta \$ natural gas = \493.16
		لية natural yas = جمعي ان
		Windows
Windows		ΔkWh =(SF/100)x(ΔkWh/100 SF)x(SEER _{casteline} / SEER _{part})
double pane windows w. AC w/ fuel heat Primary School		ΔkWh =(2000 / 100)x(550)x(14 / 14)
ΔkWh/100 SF	550	$\Delta kWh = (20.00) x(550) x(1)$
ΔkW/100 SF	0	$\Delta kWh = 11000.00$
Δtherms/100 SF	62.3	
SF	2000	ΔkW =(SF/100)x(ΔkW/100 SF)x(EER _{basteline} / EER _{part}) x CF
CF	0.477	$\Delta kW = (2000 / 100) x(0) x(11.2 / 11.2) x(0.477)$
SEER _{part}	14	$\Delta kW = (20.00) x(0) x(1) x(0.477)$
EER _{part}	11.2	$\Delta kW = 0.00$
EFF _{part}	75%	
SEERbaseline	14	ΔMMbtu =(SF/100)x((Δtherms/100 SF)/ 10)x(EER _{baseline} / EER _{part})
EERbaseline	11.2	ΔMMbtu =(2000 / 100)x((62.3)/ 10)x(0.8 / 0.75)
EFF _{baseline}	80%	$\Delta MMbtu = (20.00) x((62.3) / 10) x(1.07)$
		$\Delta MMbtu = 132.91$
		<u>AMMBtu = 228.11</u>
		Atherm = 2281
		TOTAL EEM-2
		$Total \Delta kWh = 11433$
		Total ΔkW = 1.44
		Δtherm = 3233.07
		$\Delta \$ kWh = \968.65
		$\Delta \$ \text{ natural gas} = \$1,674.82$

Smith Intermediate School Room Temp Setpoint Cooling OA Temp Setpoint Cooling Room Temp Setpoint Heating OA Temp Setpoint Heating EFLH Cooling and Heating, Syracuse	75 °F 89 °F <u>Roof</u> 70 °F <u>ΔkWh₈ = (((Roof Uvalue_{base} x Roof SF_{base})-(Roof Uvalue_{ee} x Roof SF_{ee}))x(T_{outdoor, design} - T_{indoor, setpoint})/ 1000)x EFLH_{cool} / IPLV 0 °F <u>ΔkWh₈ = (((0.050 x 60000)-(0.033 x 60000))x(89 - 75)/ 1000)x 0 / 14.2 ΔkWh₈ = 0</u></u>
High School, Cooling High School, Heating Baseline NYS TRM - Code air handling unit	0 EFLH _{eod} ΔkWh _{eool} = 0 960 EFLH _{heat} ΔkWh _h = (((Roof Uvalue _{base} x Roof SF _{base})-(Roof Uvalue _{es} x Roof SF _{ee}))x(T _{indoor, sepoint} - T _{outdoor, design})/ 1000) x EFLH _{heat} / COPx3.412 ΔkWh _h = (((0.050 x 60000)-(0.033 x 60000))x(70 - 0)/ 1000) x 960 / 0.00 ΔkWh _h = 0
11 EER, 80% Efficiency	ΔkWPheast = 0 ΔkWa =(((Roof Utalluease x Roof SFase)-(Roof SFase))x(Toutsour, design - Timbor, septiont)/ 1000)/ EER ΔkWa = (((0.050 x 60000))x(89 - 75)/ 1000)/ 11.0 ΔkWa = 1.273 - - - 75)/ 1000)/ 11.0
Rod f Rod SF Upper Existing: Bull-Up roofing, 3° insulation R=5 New: 6° Insulation, R=5/in, R-30 total Cooling Efficiency Cooling Efficiency Heating Efficiency N/A Heating Fuel Efficiency	ΔkWecoil = 1.273 0.050 U 0.050 U 0.033 U ΔMMbtu _a =(((Roof Uvalue _{base} x Roof SF _{base})-(Roof Uvalue _{be} x Roof SF _{ee}))x(T _{indoor, sergore} - T _{outdoor, design})/ 1000)x EFLH _{next} / Eff _{rustNext} / 1000 111 EER ΔMMbtu _a =(((0.050 x 60000)-(0.033 x 60000))x(70 - 0)/ 1000)x 960 / 80% / 1000 14.2 IPLV ΔMMbtu _a = 84 0.0 COP 80% Eff ΔMMBtu = 84
	Total ΔkWh =0Total ΔkW =1.273 $\Delta therm$ =840 $\Delta $$ kWh=\$0.00 $\Delta $$ natural gas=\$433.79Windows
<u>Windows</u> double pane windows w/ fuel heat Primary School ΔkWh/10 ΔkW/10 Δtherms/10	AkWh =(SF/100)x(AkWh/100 SF)x(SEERpart) AkWh =(2000 / 100)x(550)x(14 / 0) SF 550 AkWh =(20.00)x(550)x(#DIV/0I) SF 0 AkWh = 0.00)x(#DIV/0I)
SEE EE EF	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
SEERo EERo EFFo	atime 11.2 ΔMMbtu =(2000 / 100)x((62.3)/ 10)x(0.8 / 0.8) atime 80% ΔMMbtu =(20.00)x((62.3)/ 10)x(1.00) atime 124.60 124.60 124.60 10
	$\begin{array}{ccc} \Delta MMBtu & = & 208.60 \\ \hline \Delta therm & = & 2086 \\ \hline \\ \hline \\ \hline \\ \hline \\ TOTAL EEM-2 \\ \hline \\ Total \Delta kWh & = & 1.27 \\ \hline \\ \Delta therm & = & 2282.00 \\ \hline \\ \Delta \$ kWh & = & \$ 0.00 \\ \hline \\ \Delta \$ natural gas & = & \$ 1.511.05 \\ \hline \end{array}$

District Offices/Bus Garage Room Temp Setpoint Cooling OA Temp Setpoint Cooling Room Temp Setpoint Heating OA Temp Setpoint Heating EFLH Cooling and Heating, Syracuse	75 °F 89 °F 70 °F 0 °F	$\label{eq:result} \begin{array}{llllllllllllllllllllllllllllllllllll$	Э x			x Roof SF, x 24000		T _{outdoor, design} 89	- T _{indoor, setpoint} - 75)/)/	1000 1000)x)x	EFLH _{cool} 298	/ IPLV / 14.2		
Auto Repair, Cooling Auto Repair, Heating Baseline NYS TRM - Code air handling unit	298 [°] EFLH _{cool} 3271 EFLH _{hea}	$\begin{array}{rcl} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$	ue _{base} x			x Roof SF x 24000		T _{indoor, setpoint} 70	- T _{outdoor, design} - 0	y y	1000 1000)x)x	EFLH _{heat} 3271	/ COPx3.41 / 0.00	2	
11 EER, 80% Efficiency		ΔkWh _{heat} = 0 ΔkWa =(((Roof Uval ΔkWa =(((0.04 ΔkWa = 0.37	9 x			x Roof SF x 24000		Toutdoor, design 89	- Tindoor, setpoint - 75)/)/	1000 1000)/)/	EER 11.0			
Roof Roof SF Upper Existing: Metal roofing, 6" Batt w/ Vinyl backing vapor barrier New: 8" Batt Insulation Cooling Efficiency	24000 SF 0.049 U 0.037 U 11 EER	ΔkW _{cool} = 0.37 ΔMMbtu _a =(((Roof Uval ΔMMbtu _a =(((0.04	ue _{base} x 9 x	Roof SF _{base})-(24000)-(x Roof SF x 24000		T _{indoor, setpoint} 70	- T _{outdoor, design} - O	y y	1000 1000)x)x	EFLH _{heat} 3271	/ Eff _{FuelHeat} / 80%	1	1000 1000
Cooling Efficiency Heating Elec Efficiency N/A Heating Fuel Efficiency	14.2 IPLV 0.0 COP 80% Eff	ΔMMbtu _a = 84 ΔMMBtu = 84 Δtherm = 842														
		$Total \Delta kWh = 86$ $Total \Delta kW = 0.37$ $\Delta therm = 842$ $\Delta $kWh = 7.7 $\Delta $natural gas = 605.4	1													
<u>Windows</u> double pane windows w. air source heat pump - small office ΔkWh/100 SF ΔkW/100 SF Δtherms/100 SF	834 0.156 0	Windows ΔkWh =(SF/11 ΔkWh =(200 / $^{-1}$ ΔkWh =(2.00 ΔkWh =(2.00 ΔkWh =(2.00	00)x()x(834):	x(SEER _{baseline} x(14 / 14 x(1	/ SEER _{pa}))	n)									
SF CF SEER _{part} EFR _{part}	200 0.477 14 11.2 80%	$\begin{array}{llllllllllllllllllllllllllllllllllll$	00)x()x(0.156):	x(EER _{baseline} x(11.2 / 11.2 x(1	/ EER _{par})x(0.477)x(0.477) x))	CF								
SEERbardine EERbardine EFFbasdine	14 11.2 80%	ΔMMbtu =(SF/10 ΔMMbtu =(200 / ' ΔMMbtu =(2.00 ΔMMbtu =(0.00 ΔMMbtu = 0.00	00)x()/ 10)/ 10)/ 10)x(EER _{basel})x(0.8 / 0.8)x(1.00		EER _{part})							
		<u>Δtherm</u> = 842 <u>TOTAL EEM-2</u> Total ΔkWh = 175 Total ΔkW = 0.53	4 2													
		Δtherm = 1683. Δ\$ kWh = \$156.4 Δ\$ natural gas = \$1,210	36													

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	EEM-3: Occupied / Unoccupied Controls				
$ \frac{1}{10^{10}} \frac{1}{10^{10}}$					
Numericant due to the dipole of the dipol			kW (100 CEM = ((bp	× 0.746	(:EE
= 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1					
$ \frac{1}{10^{10}} \left(\frac{1}{10^{10}} + \frac{1}{10^{1$	LFcomp	0.8			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	LF _{dry er}				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				x((0.8	x(1.1)x(0.01)x(1)x 0.5 x 8760)+(0.254 x(1 + 1)x(0.5)x 8760))
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			ΔKVVN _{comp} = 2264		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			AkWbarn - units	x I.F	V// https://www.www.www.www.www.www.www.www.www.w
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			ΔkWh _{diver} = 1		∧ ((1 x 0.746) / 0.8))+(1 x 0.746) / 0.8))+(1 x 0.746) / 0.8))× 0.5 x 8760
$ \left \begin{array}{cccccccccccccccccccccccccccccccccccc$		8760			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	kW _{comp,Fan Motor}	1			
$ \frac{1}{10^{10} \times 10^{10}} = 1 \\ 1$	kWcomp,Comp Mator			+ ΔkWh _{dryer}	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			ΔkWh = 8799		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			Summer Deels Calesident Demond Society		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					V/ ACEM/100 V/ 1 + Air V/ KW/100 CEM V/ CE
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			$\Delta kW_{comp} = 1$		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			a ann agu		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	EFFcomp, Comp Motor				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	CF	0.8	$\Delta kW_{dryer} = 1$	x 0.8	x((1 x 0.746 / 0.8)+(1 x 0.746 / 0.8))x 0.5 x 0.8
AW z List Expression Expressincon			$\Delta kW_{dryer} = 0.60$		
AW 1.2 Experiment below			A1/10/ A1/10/		
Supplicity Image: Supplicity Supplity Supplity Sup				+ Δκτν dryer	
Image: Stand in the stand is a stand in the stand in the stand is a					
Important <			TOTAL EEM-3		
Lambda Lambda <thlambda< th=""> <thlambda< th=""> <thlambda< t<="" td=""><td></td><td></td><td></td><td></td><td></td></thlambda<></thlambda<></thlambda<>					
Part Mark State in Jakes <					
Temperature setteds are in plane W/ 100 CPI M/ 100 CPI N/ 100 CPI	Parent Primary Colorad		Δ\$ kWh = \$667.27		
Precunsitic System to Direct Digital Control (DOC) System Upgrade V/ 100 CPM (1 1 N/ 0.746 / 1 N/ 0.746 / 1 N/ 0.746 / 1 N/ 0.746 / 1 N/ 0.746 N N/			kW / 100 CEM =((bb 5 March	x 0.746	(FEF
Ling 0.8 Ling 0.51 Ling 0.54 Allea 0.55 Allea 0.55					
Leg 0.8 <u>Arrow Electric Former Surviv</u> Line 0.25 <u>Arrow Sectors</u> Algo 0.1 <u>AWM_{pon}</u> = vits v(1 Sectors 1, 1 v) (1 V, 1 v) (1 v) (kW / 100 CFM = 75		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
Alices 0.1 ΔΔVPhesso = 1 x(1 0.8 x(1 1 ix(0.01 ix(1 ix 0.5 x 8760 i+(0.254 x(1 1 i>(0.5 x 8760 i+(0.25 x(1 1 i>(0.7 x 8760 i+(0.254 x(1 1 i>(0.5 x 8760 i+(0.254 x(1 1 i>(0.7 x 8760 i+(0.254 x(1 1 i>(0.7 x 8760 i+(0.7 x 0.7 <th< td=""><td></td><td></td><td></td><td></td><td></td></th<>					
ACFA 1 ΔAVPlog = 2264 ACFA 1					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				x((0.8	x(1.1)x(0.01)x(1)x 0.5 x 8760)+(0.254 x(1 + 1)x(0.5)x 8760))
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			ΔKVVN _{comp} = 2264		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			AkWbarra - units	x I.F	V// https://www.www.www.www.www.www.www.www.www.w
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
kW 1 ΔkWh = ΔkWh ΔkWh = ΔkWh ΔkWh - ΔkWh - ΔkWh - ΔkWh - ΔkWh - ΔkWh -					· · · · · · · · · · · · · · · · · · ·
Pbpuye Far Mature 1 ΔAVWh = 8790 Phpuye, Far Mature 1 Summer Peak Coincident Demand Stating Phpume, Far Mature 1 AdWump = 115 x CF Phpume, Far Mature 0.8 AdWump = 1 x 0.8 x 0.01 x 1.8 x 0.8 EFFEngue, Tan Mature 0.8 AdWump = 0.5 3 3 2 3 3 3 4 1 x 0.8 1 1 2 2 3 3 4 3 3 4					
hppayse, Camp, Matar 1 hppayse, Camp, Matar 1 Summer Petak Coloridation Damand Savingst hppayse, Camp, Camp, Matar 1 AdW_camp = units x LF camp x(ACFM/100)x(1 + Alfrass)x(KW / 100 CFM x CF EFF Strate Matar 0.8 AdW_camp = 0.13 x 0.8 x(0.01)x(1.1)x(75)x 0.8 EFF Strate Matar 0.8 AdW_camp = 0.53 Strate Matar 0.746 / EFF_orget_Fan Matar X C/F EFF Strate Matar 1 AdW gave = 1.8 x LFayer X((Payer,Fan Matar X 0.746 / EFF_orget_Camp, Matar X C/F EFF Comp, Camp, Matar 1 AdW gave 1 x 0.8 X((1 x 0.746 / EFF_orget_Camp, Matar X 0.5 x 0.8 CF 0.8 AdW gaver 0.60 - 0.746 0.8 / (x	kW _{comp,Comp Motor}			+ ΔkWh_{dryer}	
hPowny, Fan Mater Summer Peak Concident Demand Sadings hPowny, Fan Mater 1 ΔKW ang = units x LFange x (ACFM/100)x(1 + Aifaas)x(KW/100 CFM x CF EFFrage Comp AdW = 1 x 0.8 x(0.01)x(1.1)x(75 x 0.8 EFFrage Comp MW x U.S x(0.01)x(1.1)x(75 x 0.8 EFF Comp MW x U.S x(0.01)x(1.1)x(75 x 0.8 EFF Comp Station = 0.31 X U.S Y 0.76 / EFF Station No Cross CF EFF OP A AW yet X U.S X 0.746 / EFF Station No X 0.5 X 0.8			ΔkWh = 8799		
hpcomp. Comp. Mater 1 ΔkW _{camp} = units x LF _{comp} x(ACFEM/100 x(1 + Alfnass x(KW / 100 CFM x CF EFF Tops: Framework 0.8 ΔAW _{camp} = 1 x 0.8 x(0.01)x(1.1)x(75)x 0.8 EFF Tops: Comp. Moder 0.8 ΔAW _{camp} = 0.53 <td></td> <td></td> <td>0</td> <td></td> <td></td>			0		
EFF _{alyse, Fan Matar D.8 ΔAW_{annp} = 1 x 0.8 x(0.01)x(1.1)x(75)x 0.8 EFF_{alyse, Fan Matar D.8 ΔAW_{annp} = 0.53 EFF_{comp}, Fan Matar 1 EFF_{comp}, Camp Matar 1 ΔAW_{alyse} = units x LF_{alyse} x((Ph_{alyse,Fan Matar} x 0.746 / EFF_{alyse,Fan Matar})(Ph_{alyse,Comp Matar} x 0.746 / EFF_{alyse,Comp Matar}))x Cycle x CF CF 0.8 ΔAW_{alyse} = 1 x 0.8 x((1 x 0.746 / 0.8)+(1 x 0.746 / 0.8))x 0.5 x 0.8 ΔAW_{alyse} = 0.60 ΔAW = ΔAW_{alyse} + ΔAW_{alyse}}}				v 15	
EFF _{abyler,Comp. Mator} 0.8 ΔXW _{comp} = 0.53 EFF _{comp} , Fan Mator 1 EFF _{comp} , Comp. Mator 1 ΔXW _{abyler} = units x LF _{abyler} x((hp _{abyler,Fan Mator} x 0.746 / EFF _{abyler,Comp. Mator} x 0.746 / EFF _{abyler,Comp. Mator}))x Cycle x CF CF 0.8 ΔXW _{abyler} = 1 x 0.8 x((1 x 0.746 / 0.8))+(1 x 0.746 / 0.8))x 0.5 x 0.8 ΔXW = 0.60 ΔXW = ΔXW _{abyler} + ΔXW _{abyler}					
EFF.comp. Earn Mater 1 EFF.comp. Comp Mater 1 ΔKW ary e units x LF.ary e x((hPasy.er.Fan. Mater X 0.746 / EFF.ary.er.Comp. Mater X) 0.746 / EFF.ary.er.Comp. Mater X) X Cycle x CF CF 0.8 ΔKW ary e 1 x 0.8 x((1 x 0.746 / 0.8)+(1 x 0.746 / 0.8))x 0.5 x 0.8 ΔKW = 0.60 ΔKW = ΔkW.ary.er					
EFF _{conp, Comp Mater} 1 ΔAW _{Byter} = units x LF _{Byter} X([Ph _{Byter} /se Mater x 0.746 / FFF _{Byter} /se Mater x 0.746 / FFF _{Byter} /se Mater x 0.746 / CFF CF 0.8 ΔAW _{Byter} = 1 x 0.8 X((1 x 0.746 / 0.8)+(1 x 0.746 / 0.8))x 0.5 x 0.8 ΔAW _{Byter} = 0.60 ΔAW = ΔAW _{Byter} + ΔAW _{Byter}			a ann agu		
CF 0.8 Δ4W ₈₇₉₆₇ = 1 x 0.8 x((1 x 0.746 / 0.8)+(1 x 0.746 / 0.8))x 0.5 x 0.8 Δ4W ₈₇₉₆₇ = 0.60 ΔkW = ΔkW ₆₀₇₉ + ΔkW ₈₇₉₆₇	EFF _{comp, Comp Motor}				
$\Delta kW = \Delta kW_{comp} + \Delta kW_{ayar}$	CF	0.8		x 0.8	x((1 x 0.746 / 0.8)+(1 x 0.746 / 0.8))x 0.5 x 0.8
			$\Delta kW_{dryer} = 0.60$		
				+ AKW	
				→ ΔK ¥¥ dry er	
			- 1.12		
TOTAL EEM-3			TOTAL EEM-3		
Total ΔkWh = 8799			Total ΔkWh = 8799		

Δ\$ kWh	=	\$745.47
Total ∆kW	= 1	1.12
Total ΔkW	h =	8799

Smith Intermediate School																										
Temperature setback are in place	kW / 100 CF	•M =((hp _{comp, Fan Mo}	tor X	0.746	/ :F	FF _{comp,Comp}	Mote))/(ACFM / 10	00)																
Pneumatic System to Direct Digital Control (DDC) System Upgrade	kW / 100 CF			×	0.746	/	1))/()																
	kW / 100 CF	•M =	75																							
LF _{comp} C	.8																									
LF _{dyer} C).8 Annual Electric	Energy S	Savings																							
LF _{idle} 0.2	54 ΔkWh _{comp}	=	units	×((LFcomp	x(1 + Air _{los}	s)x(ACFM _r /10)x(00	kW / 100 CF	M)x	Cycle	x	hrs)+(LFidle	x(k\	Ncomp,Fan Motor	+	kWcomp,Comp Mator)x(1-Cycle)x	hrs))
Ain _{oss} C	0.1 ∆kWh _{comp}	=	1	×((0.8	x(1.1)x(0.01)x(1)x	0.5	x	8760)+(0.254	x(1	+	1)x(0.5)x	8760))
ACFM.	1 ∆kWh _{comp}	=	2264																							
ACFM	1																									
kW / 100CFM	1 ∆kWh _{dry er}	=	units	x	LFcomp	x((†	Pdryer, Fan M	Actor X	0.746	/	EFFdry er, Fan M	tor)+(hp	rver.Comp Moto	r X	0.746	/ EF	Fdry er, Comp N	_{(otor}))x	Cycle	x	hrs					
Cycle 0	0.5 ΔkWh _{dry er}		1	x	0.8	x((1	×	0.746	/	0.8)+(1	×	0.746	/	0.8))x	0.5	x	8760					
Hrs 87			6535																							
kW comp. Fan Motor	1																									
kW _{comp,Comp Motor}	1 ΔkWh	=	∆kWh _{comp}	+	∆kWh _{drver}																					
hpdryer, Fan Motor	1 ΔkWh	=	8799																							
hpdryer, Comp Motor	1																									
hpcomp, Fan Motor	1 Summer Peak	Coincider	nt Demand Savin	ngs																						
hpcomp, Comp Motor	1 ∆kW _{comp}	=	units	x	LFcomp	x(ACFM/10	0)x(1 + Airlos	s)x(kW / 100 CF	M)x	CF													
EFF _{dryer, Fan Motor} 0	0.8 ∆kW _{comp}	=	1	x	0.8	x(0.01)x(1.1)x(75)x	0.8													
EFF _{dryer,Comp Motor}	0.8 ∆kW _{comp}	=	0.53																							
EFF _{comp, Fan Motor}	1																									
EFF _{comp, Comp Motor}	1 ∆kW _{dryer}	=	units	x	LF _{dry er}	x((1	hp _{dryer,Fan N}	lotor X	0.746	/	EFF _{dry er, Fan M}	ator)+(hp	ry er, Comp Moto	r X	0.746	/ EF	Fdry er, Comp N	_{totor}))x	Cycle	x	CF					
).8 ∆kW _{dryer}	=	1	x	0.8	×((1	х	0.746	/	0.8)+(1	x	0.746	/	0.8))x	0.5	x	0.8					
	∆kW _{dryer}	=	0.60																							
	ΔkW	=	ΔkW_{comp}	+	∆kW _{dryer}																					
	ΔkW	=	1.12																							
	T Total ΔkW	OTALEE		_																						

∆\$ kWh	=	\$765.74
Total ∆kW	=	1.12
I otal Δkwh	=	8/99

EEM-4: Heating and Cooling Plant Upgrades

JR/SR High School

EEM-4a: Install High Efficiency Boiler

units	1	Annual Fuel Energy	Saving	<u>s</u>														
kBTU/h _{in}	12500	ΔMMBtu	=	units	х	kBTU/h _{in}	/	unit	×(Eff_{ee}	/	Eff _{baseline}	-	1)×	EFLH _{heating}	/	1,000
Eff _{ee}	95%	ΔMMBtu	=	1	x	12500	/	1	x(95%	/	80%	-	1)x	960	/	1,000
Eff _{baseline}	80%	ΔMMBtu	=	2250														
EFLH _{heating}	960	Δtherm	=	22500														
		TOTA	L EEM-4	4a														
		Total ∆kWh	=	0														
		Total ΔkW	-	0.00														
		Δtherm	-	22500														
		Δ\$ kWh	=	\$0.00														
		∆\$ natural gas	=	\$10,732														

EEM-4b: Install Ground Source Heat Pump (GSHP) System

BCL 4,500,000 BTU/h Annual Electric Energy Savings

BHL 7	,500,000 BTU/h	ΔkWh	=(BCL / 1,000	x(1/EER _{season,baseline}	-	1/EER _{season,ee})x	EFLH _{cooling})+(BHL / 3,412	x(FElecHeat	/	COP _{season,basel}	line -	1/	COP _{season,ee})x	EFLHheating)
FElecHeat	0	ΔkWh	=(4500	x(0.071	-	0.068)x	388)+(2198	x(0	/	4.10	-		0.33)x	960)
F _{FuelHeat}	1	ΔkWh	-	(685849)																		
EER _{season, baseline}	14.0 BTU/W-ł	'nr			-																	
EER _{peak,baseline}	11.2 BTU/W-ł	Summer Peak Coinc	cident	Demand Savings	L																	
EER _{season, ee}	14.71 BTU/W-ł	nı ΔkW	=	BCL / 1,000	x(1/EER _{peak,baseline}	-	1/EER _{GSHP,full,ee})x	CF												
EER _{GSHP, full, ee}	18 BTU/W-ł	u ΔkW	=	4500	x(0.089285714	-	0.055555556)x	0.8												
COP _{season, baseline}	4.10	ΔkW	=	121																		
COP _{season, ee}	3.05																					
Eff _{baseline}	80%	Annual Fuel Energy	Savir	ngs																		
EFLH _{cooling}	388	ΔMMBtu	=	BHL / 1,000,000	х	F _{FuelHeat}	/	Eff _{baseline}	х	EFLHheating												
EFLHheating	960	ΔMMBtu	=	7.50	х	1	/	80%	х	960												
CF	0.8	ΔMMBtu	=	9000																		
		∆therm	=	90000																		
					1																	
		TOTAL	. EEN																			
		Total ∆kWh	=	-685849	1																	

TOTAL EEM-4b											
Total ∆kWh	=	-685849									
Total ∆kW	=	121.43									
∆therm	-	90000									
Δ\$ kWh	=	(\$52,014.05)									
∆\$ natural gas	=	\$42,928.45									

EEM-4: Heating and Cooling Plant Upgrades EEM-4: Install High Efficiency Steam Bolly-

EEM-4a: Install High Efficiency Steam Boiler																
	units	1	Annual Fuel Energy Saving	5												
	kBTU/h _{in}	4185	ΔMMBtu =	units	x kBTU/h _{in}	/	unit >	<(Eff _{ee}	/	Eff _{baseline}	- 1)x	EFLH _{heating}	/ 1,000		
	Eff _{ee}	85%	ΔMMBtu =	1	x 4185	/	1 >	<(85%	/	75%	- 1)×	960	/ 1,000		
	Eff _{baseline}	75%	∆MMBtu =	536												
	EFLH _{heating}	960	∆therm =	5357												
					1											
			TOTAL EEM-	4a												
			Total ∆kWh =	0												
			Total ∆kW =	0.00												
			Δtherm =	5357												
			Δ\$ kWh =	\$0.00												
EEM-4b: Convert to High Efficiency Hot Water Boilers			∆\$ natural gas =	\$2,775	1											
EEW-40: Convert to High Efficiency Hot water bollers	units	1	Annual Fuel Energy Saving													
	kBTU/h _{in}	4185	ΔMMBtu =	units	x kBTU/h _{in}	/	unit >	د(Eff _{ee}	/	Eff _{baseline}	- 1)x	EFLH _{heating}	/ 1,000		
	Eff _{ee}	95%	ΔMMBtu =	1	x 4185	,		<(95%	,		- 1)x	-	/ 1,000		
	Eff _{baseline}	75%	ΔMMBtu =	1071	1105	'	- /		,	,5,0	-	JA.	500	, 1,000		
	EFLHheating	960	Δtherm =	1071												
	EFLEheating	960	Auterin =	10714	1											
			TOTAL EEM-	19	1											
			Total ΔkWh =	0												
			Total ∆kW =	0.00												
			∆therm =	10714												
			Δ\$ kWh =	\$0.00												
			∆\$ natural gas =	\$5,550												
EEM-4c: Install Central Ground Source Heat Pump (G		4 50 000 077 18														
		168,000 BTU/h 2,511,000 BTU/h	<u>Annual Electric Energy Sav</u> ΔkWh =(x(1/EER _{season,basel}	4/5				BHL / 3,412		, ,	COD	e - 1 / COP _{season,ee})		,
		0		168	x(0.089	ne - 1/L		x EFLH _{cooling})+()+(,	3.28	- 0.33)	-)
	F _{ElecHeat}	1	$\Delta kWh = ($	(230249)	x(0.009	-	0.000)	X 300)+(730	«(0	/	3.20	- 0.55)	x 900)
	F _{FuelHeat}	11.2 BTU/W		(230249)	1											
	EER _{season, baseline}															
	EER _{peak,baseline}		-hrSummer Peak Coincident I	-												
	EER _{season, ee}	14.71 BTU/W			x(1/EER _{peak,baselin}											
	EER _{GSHP, full, ee}	18 BTU/W		168	x(0.089	•	0.056)	x 0.8								
	COP _{season,baseline}	3.28	ΔkW =	5												
	COP _{season, ee}	3.05														
	Eff _{baseline}	75%	Annual Fuel Energy Saving	5												
	EFLH _{cooling}	388	ΔMMBtu = E	HL / 1,000,000	x F _{FuelHeat}	/	Eff _{baseline}	x EFLH _{heating}								
	EFLH _{heating}	960	ΔMMBtu =	2.51	x 1	/		x 960								
	CF	0.8	ΔMMBtu =	3214												
			Δtherm =	32141												
					1											
			TOTAL EEM-													
			Total ΔkWh = Total ΔkW =	-230249 4.53												
			Δtherm =	4.53												
			Δ\$ kWh =	(\$19,508.09)												

 Δ kWh = (\$19,508.09) Δ \$ natural gas = \$16,649.83

Δ\$ kWh = (\$19,508.09) Δ\$ natural gas = \$16,649.83

M/E ENGINEERING, P.C. NOVEMBER 19, 2021

	58,000 BTU/h 11,000 BTU/h	Annual Electric Ene ΔkWh	ergy Sa =(vings BCL / 1,000	- x(1	/EER _{season,baseline}		1/EER _{season,ee})x	EFLHcooling)+(BHL / 3,412	×(F _{ElecHeat}	/ C1	OP _{season,bas}	eline - 1	/ COP _{season} ,	_{ee})x	EFLHheating)
F _{ElecHeat}	0	ΔkWh	=(168	×(0.089	-	0.068)x	388)+(736	x(0	/	3.28	-	0.33)x	960)
F _{FuelHeat}	1	ΔkWh	-	(230249)																	
EER _{season, baseline}	11.2 BTU/W-h	r																			
EER _{peak, baseline}	11.2 BTU/W-h	Summer Peak Coin	cident	Demand Savings	<u>s</u>																
	14.71 BTU/W-h	ΔkW	=	BCL / 1,000	x(′	1/EER _{peak,baseline}	- 1	1/EER _{GSHP,full,e}	e)x	CF											
EER _{GSHP,full,ee}	18 BTU/W-h	ΔkW	-	168	×(0.089	-	0.056)x	0.8											
COP _{season} , baseline	3.28	ΔkW	-	5																	
COP _{season,ee}	3.05																				
Eff _{baseline}		Annual Fuel Energy	Saving	<u>15</u>																	
EFLH _{cooling}	388	ΔMMBtu	= 1	BHL / 1,000,000	x	F _{FuelHeat}	/	Eff _{baseline}	x	EFLHheating											
EFLH _{heating}	960	ΔMMBtu	=	2.51	x	1	/	75%	х	960											
CF	0.8	ΔMMBtu	-	3214																	
		Δtherm	=	32141	1																
	1	7074	L EEM-	4-	٦																
		Total ΔkWh	=	-4c -230249	-																
		Total ΔkW	-	4.53																	
		Δtherm	-	32141	1																

Smith Intermediate School

EEM-4: Heating and Cooling Plant Upgrades EEM-4a: Install High Efficiency Steam Boiler units 1 Annual Fuel Energy Savings)x EFLH_{heating} / kBTU/hin 4.184 kBTU/h_{in} / Eff_{baseline} - 1 ∆MMBtu = units unit ×(Eff_{ee} / 1.000 х $\mathsf{Eff}_{\mathsf{ee}}$ 85% ΔMMBtu 1 4184 / 1 85% 75% - 1 960 / 1.000 х x(/)x = $\mathsf{Eff}_{\mathsf{baseline}}$ 75% ΔMMBtu = 536 EFLH_{heating} 960 ∆therm = 5356 TOTAL EEM-4a Total ∆kWh = 0 Total ∆kW 0.00 -∆therm 5356 = ∆\$ kWh \$0.00 = ∆\$ natural gas = \$2,766 EEM-4b: Convert to High Efficiency Hot Water Boilers & Distribution units 1 Annual Fuel Energy Savings 4,184 kBTU/h_{in})x EFLH_{heating} / kBTU/h_{in} ∆MMBtu = units х / unit ×($\mathsf{Eff}_{\mathsf{ee}}$ / Eff_{baseline} - 1 1,000 $\mathsf{Eff}_{\mathsf{ee}}$ AMMBtu 75% -)x 960 / 95% 1 4184 / 1 x(95% / 1 1.000 x $\mathsf{Eff}_{\mathsf{baseline}}$ 75% AMMBtu = 1071 EFLH_{heating} 960 ∆therm = 10711 TOTAL EEM-4a Total ∆kWh 0 = Total ∆kW -0.00 ∆therm 10711 = Δ\$ kWh = \$0.00 ∆\$ natural gas = \$5.531 EEM-4c: Install Central Ground Source Heat Pump (GSHP) System BCL 96,000 BTU/h Annual Electric Energy Savings BHL 2,511,000 BTU/h ∆kWh =(BCL/1,000 x(1/EERseason,baseline - 1/EERseason,ee)x EFLHcooling)+(BHL/3,412 x(FElecHeat / COPseason,baseline - 1/COPseason,ee)x EFLHheating F_{ElecHeat} 0 ∆kWh =(96 x(0.071 - 0.068)x 388)+(736 x(0 / 4.10 - 0.33)x 960 F_{FuelHeat} 1 ΔkWh = (231509) 14 BTU/W-hr EER_{season, baseline} 11.2 BTU/W-hrSummer Peak Coincident Demand Savings EER_{peak,baseline} 14.71 BTU/W-hr ΔkW = BCL / 1,000 x(1/EER_{peak,baseline} - 1/EER_{GSHP,full,ee})x EER_{season, ee} CF EER_{GSHP}, full, ee 18 BTU/W-hr ΔkW = 96 x(0.089 - 0.056)x 0.8 COP_{season, baseline} 4.10 ΔkW = 3 $\mathsf{COP}_{\mathsf{season},\mathsf{ee}}$ 3.05 Eff_{baseline} 75% Annual Fuel Energy Savings EFLH_{cooling} 388 ΔMMBtu = BHL / 1,000,000 x F_{FuelHeat} / Eff_{baseline} x EFLH_{heating} EFLH_{heating} ΔMMBtu 960 = 2.51 x / 75% 960 1 х 0.8 ΔMMBtu = 3214 CF Δtherm = 32141 TOTAL EEM-4c Total ΔkWh = -231509 Total ∆kW 2.59 ∆therm ____ 32141

Δ\$ kWh = (\$20,148.37) Δ\$ natural gas = \$16,598.20)

)

Δ\$ kWh = (\$20,139.99) Δ\$ natural gas = \$16,598.20

M/E ENGINEERING, P.C. NOVEMBER 19, 2021

EEM-4d: Install Terminal Ground Source Heat Pump (GSHP) System BCL 168,000 BTU/h BHL 2,511,000 BTU/h Felecteat 0	ΔkWh =(BCL/1,000 x(1/EER _{sesson,baseline} 1/EER _{sesson,baseline} x EFLH _{cooling} +(BHL/3,412 x(F _{EBecHeat} / COP _{sesson,baseline} 1/ COP _{sesson,baseline} x EFLH _{beating} x) EFLH _{beating} x) EFLH _{beating} x x)
F _{FuelHeat} 1	$\Delta kWh = (231413)$	
EER _{season, baseline} 14 BTU/V		
EER _{peak, baseline} 11.2 BTU/V	-hr <u>Summer Peak Coincident Demand Savings</u>	
EER _{season,ee} 14.71 BTU/V	-hu ΔkW = BCL/1,000 x(1/EER _{geak,baseline} - 1/EER _{GSHP,full,ee})x CF	
EER _{GSHP,full,ee} 18 BTU/V	$-h_1 \Delta kW = 168 \times (0.089 - 0.056) \times 0.8$	
COP _{season, baseline} 4.10	$\Delta kW = 5$	
COP _{season,ee} 3.05		
Eff _{baseline} 75%	Annual Fuel Energy Savings	
EFLH _{cooling} 388	ΔMMBtu = BHL/1,000,000 x F _{FuelHeat} / Eff _{baseline} x EFLH _{heating}	
EFLH _{heating} 960	ΔMMBtu = 2.51 x 1 / 75% x 960	
CF 0.8	ΔMMBtu = 3214	
	<u>Δtherm</u> = 32141	
	TOTAL EEM-4c	
	Total A&Wh = -231413 Total A&W = 4 53	
	Total ΔkW = 4.53 Δtherm = 32141	

M/E ENGINEERING, P.C. November 19, 2021

District Officer /Bus Conner																							
District Offices/Bus Garage EEM-4: Heating and Cooling Plant Upgrades																							
EEM-4a: Air Source Heat Pump (VRF)	•		ΔkWh	=((BCL x 1/1,000	x(1/SEER _{baseline}	-	1/EER _{season.ee})x	EFLH	x	Fload cooling)+(BHL x 1/1,000	x(FElecHeat	/	COPsea	son. baseline		1/COP _{season.ee})x
	BCL	72,000 BTU/h			1/3.412	x	EFLHheating		load, heating, ElecHea				F _{ElecHeat, new}	x	1/3.412	x				d,heating			
		1,004,400 BTU/h	ΔkWh	=((72	x(0.077	-	0.072)x	768	x	1)+(1004.4	×(0	1		810	-	0.245)x
	EFLH _{cooling}	768			0.293	x	750	х	1)-(1004	x	0	х	0.293	x	750	x(0)))		
	EFLH _{heating}	750	ΔkWh	=	(53,918.84))																	
	SEER _{baseline}	13				-																	
	EER _{baseline}	11.2	ΔkW	=	BCL	х	1/1,000	×(1/EER _{baseline}	-	1/EER _{ee})×	Fload, cooling	x	CF								
	EER _{ee}	13	ΔkW	=	72,000	x	0.001	x(0.089	-	0.077)×	1	x	0.8								
	EER _{season, ee}	13.9	ΔkW	=	0.71																		
	COP _{season, baseline}	3.8				-																	
	COP _{season, ee}	4.1	ΔMMBtu	=	BHL	x	1/1,000,000	х	F _{FuelHeat}	/	EFF _{baseline}	x	EFLH _{heating}	хF	Fload, heating, ElecHea	t							
	FElecHeat	0	ΔMMBtu	=	1,004,400	x	0.000001	х	1	/	11.2	x	750	x									
	F _{ElecHeat,new}	0	ΔMMBtu	=	67.26	1																	
	F _{FuelHeat}	1	Δtherm	=	673	1																	
	Fload, cooling	1				-																	
	Fload, heating	1	Total ∆kWh	=	-53919																		
	Fload, heating, ElecHeat	1	Total ∆kW	=	0.71																		
	Fload, heating, FuelHeat	1	Δtherm	=	673																		
	CF	0.8	Δ\$ kWh	=	(\$4,821.33)																		
			∆\$ natural gas	=	\$483.45																		
EEM-4b: Install Ground Source Heat Pump (GSHP)		72 000 BTI I/h	Annual Electric En	erov Sa	vinas																		
EEM-4b: Install Ground Source Heat Pump (GSHP)	BCL	72,000 BTU/h 1,004,400 BTU/h	Annual Electric En ΔkWh	ergy Sa =(vings BCL / 1,000	x(1	/EER _{season.baselin}		1/EER _{season.ee})x	EFLHcooling)+(BHL / 3,412	x(F _{ElecHeat}	/	COP _{season,baselir}	e -	1 / COI	Season.ee)x	EFLHheating)
EEM-4b: Install Ground Source Heat Pump (GSHP)	BCL BHL					x(1 x(/EER _{season,baseline} 0.071	-	1/EER _{season,ee} 0.068)x)x	EFLH _{cooling} 388)+()+(BHL / 3,412 294	x(x(F _{ElecHeat}	/	COP _{season,baselir} 4.10	e -		Season,ee)x)x	EFLH _{heating} 960)
EEM-4b: Install Ground Source Heat Pump (GSHP)	BCL BHL F _{ElecHeat}	1,004,400 BTU/h	ΔkWh	=(BCL / 1,000																	-))
EEM-4b: Install Ground Source Heat Pump (GSHP)	BCL BHL	1,004,400 BTU/h 0	ΔkWh ΔkWh ΔkWh	=(=(BCL / 1,000 72																	-))
EEM-4b: Install Ground Source Heat Pump (GSHP)	BCL BHL F _{Electeat} F _{FuelHeat} EER _{season,baseline}	1,004,400 BTU/h 0 1 14 BTU/W-h	ΔkWh ΔkWh ΔkWh	=(=(=	BCL / 1,000 72 (92559)) ×(-)
EEM-4b: Install Ground Source Heat Pump (GSHP)	BCL BHL F _{ElecHeat} F _{FuelHeat}	1,004,400 BTU/h 0 1 14 BTU/W-h	ΔkWh ΔkWh ΔkWh nr ni <u>Summer Peak Coin</u>	=(=(=	BCL / 1,000 72 (92559)	 		-	0.068)x												-))
EEM-4b: Install Ground Source Heat Pump (GSHP)	BCL BHL F _{ElecHeat} F _{FuelHeat} EER _{season,baseline} EER _{peak,baseline}	1,004,400 BTU/h 0 1 14 BTU/W-h 11.2 BTU/W-h	ΔkWh ΔkWh ΔkWh nr ni <u>Summer Peak Coir</u> ni ΔkW	=(=(=	BCL / 1,000 72 (92559) Demand Savings	 	0.071	-	0.068)x	388											-)
EEM-4b: Install Ground Source Heat Pump (GSHP)	BCL BHL F _{Electeat} F _{FuelHeat} EER _{season, baseline} EER _{peak, baseline} EER _{season, ee}	1,004,400 BTU/h 0 1 14 BTU/W-h 11.2 BTU/W-h 14.71 BTU/W-h	ΔkWh ΔkWh ΔkWh nr ni <u>Summer Peak Coir</u> ni ΔkW	=(=(= ncident I	BCL / 1,000 72 (92559) Demand Savings BCL / 1,000	x(0.071 1/EER _{peak,baseline}	-	0.068)x =)x	388 CF											-)
EEM-4b: Install Ground Source Heat Pump (GSHP)	BCL BHL F _{Electeat} F _{Fuebteat} EER _{season, baseline} EER _{season, ee} EER _{season, ee} EER _{season, ee}	1,004,400 BTU/h 0 1 14 BTU/W-ł 11.2 BTU/W-ł 14.71 BTU/W-ł 18 BTU/W-ł	ΔkWh ΔkWh ΔkWh ΔkWh ΔkWh ΔkWh ΔkWh ΔkWh ΔkWh	=(=(= ncident I = =	BCL / 1,000 72 (92559) Demand Savings BCL / 1,000 72	x(0.071 1/EER _{peak,baseline}	-	0.068)x =)x	388 CF											-)
EEM-4b: Install Ground Source Heat Pump (GSHP)	BCL BHL FEICHEAT EER-SEASON, baseline EER-SEASON, ee EER-SEASON, ee EER-SEASON, ee EER-SEASON, ee EER-SEASON, baseline	1,004,400 BTU/h 0 1 14 BTU/W-ł 11.2 BTU/W-ł 14.71 BTU/W-ł 18 BTU/W-ł 4.10	ΔkWh ΔkWh ΔkWh ΔkWh ΔkWh ΔkWh ΔkWh ΔkWh ΔkWh	=(=(= = = = = =	BCL / 1,000 72 (92559) Demand Savings BCL / 1,000 72 (392)	x(0.071 1/EER _{peak,baseline}	-	0.068)x =)x	388 CF											-)
EEM-4b: Install Ground Source Heat Pump (GSHP)	BCL BHL F _{Electeat} F _{Fuebteat} EER _{season} , baseline EER _{season} , ea EER _{costri} , fuil, ee COP _{season} , baseline COP _{season} , ee	1,004,400 BTU/h 0 1 14 BTU/W-ł 14.2 BTU/W-ł 14.71 BTU/W-ł 18 BTU/W-ł 4.10 3.05	ΔkWh ΔkWh ΔkWh ar ar ar ΔkW ΔkW ΔkW ΔkW	=(=(= = = = = = y Saving	BCL / 1,000 72 (92559) Demand Savings BCL / 1,000 72 (392)	x(s x(x(0.071 1/EER _{peak,baseline}	-	0.068)x =)x	388 CF											-)
EEM-4b: Install Ground Source Heat Pump (GSHP)	BCL BHL FEecteat Frueheat EERsesson,baseline EERsesson,baseline EERscisyn,fulce EERscisyn,fulce EERscisyn,fulce EERscisyn,fulce EERscisyn,fulce EERscisyn,fulce EERscisyn,fulce EERscisyn,fulce EERscisyn,fulce	1,004,400 BTU/h 0 1 14 BTU/W+ 11.2 BTU/W+ 14.71 BTU/W+ 8 BTU/W+ 4.10 3.05 80%	AkWh AkWh AkWh Margin and Summer Peak Colin AkW AkW AkW AkW AkW AkW	=(=(= = = = = = y Saving	BCL / 1,000 72 (92559) Demand Savings BCL / 1,000 72 (392) IS	x(s x(x(0.071 1/EER _{peak,baseline} 11.2	-	0.068 I/EER _{GSHP,full,e} 18)x =)x)x	388 CF 0.8											-)
EEM-4b: Install Ground Source Heat Pump (GSHP)	BCL BHL Fieldetast EERyeakookaseline EERyeakookaseline EERyeakookaseline EERyeakookaseline EERyeakookaseline COPyeasonce Effbaseline EFLH.cooling	1,004,400 BTU/h 0 1 14 BTU/V-f 11.2 BTU/V-f 14.71 BTU/V-f 18 BTU/V-f 4.10 3.05 80% 388	ΔkWh ΔkWh ΔkWh u Summer Peak Coli u ΔkW ΔkW ΔkW ΔkW ΔkW Δhmual Fuel Energy ΔMMBtu ΔMMBtu	=(=(= = = = y Saving = E	BCL / 1,000 72 (92559) Demand Savings BCL / 1,000 72 (392) IS BHL / 1,000,000 1.00 1205	x(x(x(x(0.071 1/EER _{peak,baseline} 11.2 F _{FuelHeat}		0.068 I/EER _{GSHP,full,e} 18 Eff _{baseline})x =)x)x x	388 CF 0.8 EFLH _{heating}											-)
EEM-4b: Install Ground Source Heat Pump (GSHP)	BCL BHL Fieldetast EERyseston, baseline EERyseston, baseline EERyseston, baseline EERyseston, baseline EERGSHP, full, ber COPyseston, ee Efflusteline EFLH-baseline EFLH-baseline	1,004,400 BTU/h 0 1 14 BTU/V+ 11.2 BTU/V+ 14.71 BTU/V+ 4.10 3.05 80% 388 960	AkWh AkWh AkWh in <u>Summer Peak Coii</u> in <u>AkW</u> AkW AkW Annual Fuel Energ AMMBtu AMMBtu	=(=(= = = = = y Saving = E =	BCL / 1,000 72 (92559) Demand Savings BCL / 1,000 72 (392) IS BHL / 1,000,000 1.00	x(x(x(x(0.071 1/EER _{peak,baseline} 11.2 F _{FuelHeat}		0.068 I/EER _{GSHP,full,e} 18 Eff _{baseline})x =)x)x x	388 CF 0.8 EFLH _{heating}											-)
EEM-4b: Install Ground Source Heat Pump (GSHP)	BCL BHL Fieldetast EERyseston, baseline EERyseston, baseline EERyseston, baseline EERyseston, baseline EERGSHP, full, ber COPyseston, ee Efflusteline EFLH-baseline EFLH-baseline	1,004,400 BTU/h 0 1 14 BTU/V+ 11.2 BTU/V+ 14.71 BTU/V+ 4.10 3.05 80% 388 960	AkWh AkWh AkWh Market Coli Market Coli Market Coli AkW Annual Fuel Energ AMMBtu AMMBtu Atherm	=(=(= = = = = y Saving = E = =	BCL / 1,000 72 (92559) Demand Saving: BCL / 1,000 72 (392) IS BHL / 1,000,000 1.00 1205 12053	x(x(x(x(0.071 1/EER _{peak,baseline} 11.2 F _{FuelHeat}		0.068 I/EER _{GSHP,full,e} 18 Eff _{baseline})x =)x)x x	388 CF 0.8 EFLH _{heating}											-)
EEM-4b: Install Ground Source Heat Pump (GSHP)	BCL BHL Fieldetast EERyseston, baseline EERyseston, baseline EERyseston, baseline EERyseston, baseline EERGSHP, full, ber COPyseston, ee Efflusteline EFLH-baseline EFLH-baseline	1,004,400 BTU/h 0 1 14 BTU/V+ 11.2 BTU/V+ 14.71 BTU/V+ 4.10 3.05 80% 388 960	AkWh AkWh AkWh Market Coli Market Coli Market Coli AkW Annual Fuel Energ AMMBtu AMMBtu Atherm	=(=(= = = = y Saving = E = =	BCL / 1,000 72 (92559) Demand Saving: BCL / 1,000 72 (392) IS BHL / 1,000,000 1.00 1205 12053	x(x(x(x(0.071 1/EER _{peak,baseline} 11.2 F _{FuelHeat}		0.068 I/EER _{GSHP,full,e} 18 Eff _{baseline})x =)x)x x	388 CF 0.8 EFLH _{heating}											-)
EEM-4b: Install Ground Source Heat Pump (GSHP)	BCL BHL Fieldetast EERyseston, baseline EERyseston, baseline EERyseston, baseline EERyseston, baseline EERGSHP, full, ber COPyseston, ee Efflusteline EFLH-baseline EFLH-baseline	1,004,400 BTU/h 0 1 14 BTU/V+ 11.2 BTU/V+ 14.71 BTU/V+ 4.10 3.05 80% 388 960	AkWh AkWh AkWh a Summer Peak Coli n AkW AkW AkW Annual Fuel Energ AMMBtu AMMBtu Atherm	=(=(= = = = = = = = = = = = = = = = =	BCL / 1,000 72 (92559) Demand Savings BCL / 1,000 72 (392) IS BHL / 1,000,000 1.00 1205 12053 4b	x(x(x(x(0.071 1/EER _{peak,baseline} 11.2 F _{FuelHeat}		0.068 I/EER _{GSHP,full,e} 18 Eff _{baseline})x =)x)x x	388 CF 0.8 EFLH _{heating}											-))
EEM-4b: Install Ground Source Heat Pump (GSHP)	BCL BHL Fieldetast EERyseston, baseline EERyseston, baseline EERyseston, baseline EERyseston, baseline EERGSHP, full, ber COPyseston, ee Efflusteline EFLH-baseline EFLH-baseline	1,004,400 BTU/h 0 1 14 BTU/V+ 11.2 BTU/V+ 14.71 BTU/V+ 4.10 3.05 80% 388 960	ΔkWh ΔkWh ΔkWh M <u>ΔkWh</u> M <u>ΔkW</u> ΔkW ΔkW ΔkW ΔkW ΔkW ΔkW Δhorm ΔMMBtu Δhorm Δthorm	=(=(= = = = y Saving = E = = = = =	BCL / 1,000 72 (92559) Demand Savings BCL / 1,000 72 (392) IS BHL / 1,000,000 1.00 1.00 1.205 1.2053 4b -92559 -391.68 1.2053	x(x(x(x(0.071 1/EER _{peak,baseline} 11.2 F _{FuelHeat}	-	0.068 I/EER _{GSHP,full,e} 18 Eff _{baseline})x =)x)x x	388 CF 0.8 EFLH _{heating}											-))
EEM-4b: Install Ground Source Heat Pump (GSHP)	BCL BHL Fieldetast EERyseston, baseline EERyseston, baseline EERyseston, baseline EERyseston, baseline EERGSHP, full, ber COPyseston, ee Efflusteline EFLH-baseline EFLH-baseline	1,004,400 BTU/h 0 1 14 BTU/V+ 11.2 BTU/V+ 14.71 BTU/V+ 4.10 3.05 80% 388 960	ΔkWh ΔkWh ΔkWh 17 10 10 10 ΔkW ΔkW ΔkW ΔkW ΔkW ΔkW ΔkW ΔkW	=(=(= = = = = = = = = = = = = = = = =	BCL / 1,000 72 (92559) Demand Savings BCL / 1,000 72 (392) 38 BHL / 1,000,000 1.00 1.205 1.205 1.205 4b -92559 -391.68	x(x(x(x(0.071 1/EER _{peak,baseline} 11.2 F _{FuelHeat}	-	0.068 I/EER _{GSHP,full,e} 18 Eff _{baseline})x =)x)x x	388 CF 0.8 EFLH _{heating}											-))

EEM-5: Solar Thermal Heat Recovery Opportunities

Jr/Sr High School

Month	Day Of Month	n Day Of Year	CT Clock Time [hr] (Local standard time)	l Latitude [degrees]	L _{ioc} Longitude of Actual Location [deg west]	L _{std} Standard Meridian for local time zone [deg west]	Date 2006 used to match bin data (January starts on a Sunday and Feburary has 28 days)	Week Of Month	Dow Day Of Week [Sunday=1 to	Day Of Week Adjusted [Sunday=1 to Saturday=7, Holiday = 8]	1st, 2nd, 3rd, etc. Sunday of month (CAREFUL! Formula changes	Starts (2nd Sunday of March 2am	Daylight Savings Ends (1st Sunday of November 2am becomes 1am, fall back to standard time)	DT Corrected Time For Daylight Savings [hr]
1.00	1.00	1.00	1.00	43.12	76.10	75.00	1/1/2006	1	3	3	0	0	0	1.00
1.00	1.00	1.00	2.00	43.12	76.10	75.00	1/1/2006	1	3	3	0	0	0	2.00
1.00	1.00	1.00	3.00	43.12	76.10	75.00	1/1/2006	1	3	3	0	0	0	3.00

Y Fractional Year [Radians]	EOT Equation Of Time [Min]	E Equation Of Time [hr]	AST Apparent Solar Time [hr]	h hour angle [degrees]	δ declination [degrees]	Σ Tilt Angle [degrees]	θ _H Solar Zenith Angle [degrees]	β solar altitude angle [degrees]	Check β solar altitude angle [degrees]	φ solar azimuth angle [degrees]	east/ west	ψ surface azimuth angle (off south) [degrees]	γ surface- solar azimuth angle [degrees]
-0.0079	-2.70	-0.04	0.88	-166.77	-23.01	90.00	157.11	-67.11	-67.11	-147.22	EAST	-45.00	102.22
-0.0072	-2.72	-0.05	1.88	-151.78	-23.01	90.00	149.23	-59.23	-59.23	-121.71	EAST	-45.00	76.71
-0.0065	-2.74	-0.05	2.88	-136.78	-23.01	90.00	139.19	-49.19	-49.19	-105.36	EAST	-45.00	60.36

θ Incidence Angle [degrees]	I _{DN} Direct Normal Radiation [BTUh/ft ²]	I _D Direct Solar Radiation [BTUh/ft ²]	I _{dh} Diffuse Horizontal Radiation [BTUh/ft ²]	I _d Diffuse Solar Raditiaon [BTUh/ft ²]	I _{GH} Global Horizontal Raditiaon [BTUh/ft ²]	I _H Horizontal Solar Radiaiton [BTUh/ft ²]	Dry Bulb Temperature [°F]	Pg Ground Solar Reflectance	I _R Reflected Solar Radiation [BTUh/ft ²]	I Total Solar Radiation On Surface [BTUh/ft2]	I Total Solar Irradiance on Surface [Wh/m ²]	HEAT On =1 Off = 0 DB ° F < Heat limit	COOL On =1 Off = 0 DB ° F > Cool limit
94.72	0.00	0.00	0.00	0.00	0.00	0.00	30.00	0.31	0.00	0.00	0.00	1	0
83.25	0.00	0.00	0.00	0.00	0.00	0.00	30.40	0.29	0.00	0.00	0.00	1	0
71.14	0.00	0.00	0.00	0.00	0.00	0.00	30.60	0.28	0.00	0.00	0.00	1	0

M/E ENGINEERING, P.C. November 19, 2021

Full ECON On=1 Off=0 DB °F > Heat limit and DB °F < Cool limit	Partial ECON On=1 Off=0 DB °F > Cool and DB °F < Max limit	heat/cool/econ	Ventilation OA Needed Total [Cfm]	Ventilation OA Needed Duct Total [Cfm]	Ventilation Through Duct Collectors [Cfm]	Ventilation Bypass Duct Collectors [Cfm]	Ventilation EA Req'd Cfm	1	radiation incident in	the plane of the collector	A Collector	A Collector Area [m ²]		G _{coll} solar energy usable by the collector [Wh]
0	0	HEAT	0	0	0	0	0		0.00	0.00	1,600.00	148.64	0.00	0.00
0	0	HEAT	0	0	0	0	0		0.00	0.00	1,600.00	148.64	0.00	0.00
0	0	HEAT	0	0	0	0	0		0.00	0.00	1,600.00	148.64	0.00	0.00

α Shortwave absorptivity of the collector	mph	v wind speed fl∕min	v wind speed m/s	Qcoll Ventilation through Collectors cfm	(1		temperature rise	ΔTav I av ailable temperature rise °C	DB outdoor air temp °F	DB outdoor air temp °C	temperature °F	Avaliable delivered air temperature	RA ° F (If sensible energy recovery device is present)	RA ° C (If sensible energy recovery device is present)
0.95	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.000	30.000	-1.111	30.000	-1.111	65.000	18.333
0.95	1.57	138.16	0.70	0.00	0.00	0.00	0.00	0.000	30.400	-0.889	30.400	-0.889	65.000	18.333
0.95	3.13	275.44	1.40	0.00	0.00	0.00	0.00	0.000	30.600	-0.778	30.600	-0.778	65.000	18.333

T _{delivered max}	T _{delivered max}	T _{delivered actual}	T delivered actual	∆Tact	∆Tact	Qsolar	Qsolar	Qsolar	Qsolar	Total Annual	Total Annual
Maximum	Maximum	Actual	Actual	actual	actual	Solar energy	Solar energy	Solar energy	Solar energy	Ventilation Heating	Ventilation Heating
delivered air	delivered air	delivered air	delivered air	temperature	temperature	Btuh	Wh	Check	Check	Energy Required	Energy Required
temperature	*	temperature	temperature	rise	rise			Btuh	Wh	Btuh	Wh
°F	°C	°F	°C	through	through						
				collector	collector						
				°F	°C						
47.759	8.755	30.000	-1.111	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
47.759	8.755	30.400	-0.889	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
47.759	8.755	30.600	-0.778	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

S	OLAR PANEL E	NERGY MODELING	RESULTS										
	DU	CT COLLECTOR											
ANTICIP	ATED VENTILA	TION COSTS W/O S	OLAR THE	RMAL									
		BTUS REQUIRED		COST AT									
MONTH	BTUS	WITH 80%		\$0.477									
	REQUIRED	EFFICIENT	THERMS	PER									
HEATING PLANT THERM													
JANUARY 50,231,994 62,789,993 608 \$371.93													
FEBRUARY	46,833,370	58,541,712	567	\$346.77									
MARCH	29,801,945	37,252,431	361	\$220.66									
APRIL	11,740,288	14,675,360	142	\$86.93									
MAY	746,050	932,563	9	\$5.52									
JUNE	29,352	36,690	0	\$0.22									
JULY	0	0	0	\$0.00									
AUGUST	0	0	0	\$0.00									
SEPTEMBER	1,148,330	1,435,412	14	\$8.50									
OCTOBER	2,510,484	3,138,105	30	\$18.59									
NOVEMBER	10,347,209	12,934,011	125	\$76.61									
DECEMBER	47,609,018	59,511,273	577	\$352.51									
TOTAL	200,998,040	251,247,549	2,435	\$1,488.25									

S	OLAR PANEL E	NERGY MODELING	RESULTS											
	DU	CT COLLECTOR												
FINAL ADJU	ISTED VENTIL	ATION COSTS USING	SOLAR 1	HERMAL										
		BTUS REQUIRED		COST AT										
MONTH	BTUS	WITH 80%		\$0.477										
MONTH	REQUIRED EFFICIENT THERMS PER													
HEATING PLANT THERM														
JANUARY	39,866,076	49,832,595	483	\$295.18										
FEBRUARY	32,698,310	40,872,887	396	\$242.11										
MARCH	17,124,956	21,406,195	207	\$126.80										
APRIL	7,581,063	9,476,329	92	\$56.13										
MAY	301,997	377,496	4	\$2.24										
JUNE	0	0	0	\$0.00										
JULY	0	0	0	\$0.00										
AUGUST	0	0	0	\$0.00										
SEPTEMBER	989,056	1,236,320	12	\$7.32										
OCTOBER	2,078,761	2,598,451	25	\$15.39										
NOVEMBER	7,686,768	9,608,460	93	\$56.92										
DECEMBER	38,893,107	48,616,384	471	\$287.98										
TOTAL	147,220,094	184,025,118	1,783	\$1,090.06										

Barry Primary School

Month	Day Of Month	n Day Of Year	CT Clock Time [hr] (Local standard time)	l Latitude [degrees]	L _{loc} Longitude of Actual Location [deg west]	L _{std} Standard Meridian for local time zone [deg west]	Date 2006 used to match bin data (January starts on a Sunday and Feburary has 28 days)		Day Of Week [Sunday=1 to	Day Of Week Adjusted [Sunday=1 to Saturday=7, Holiday = 8]	lst, 2nd, 3rd, etc. Sunday of month (CAREFUL! Formula changes	Starts (2nd Sunday of March 2am becomes 3am, spring ahead to	Daylight Savings Ends (1st Sunday of November 2am becomes 1am, fall back to standard time)	DT Correcte Time Fo Dayligh Saving [hr]	or nt
1.00	1.00	1.00	1.00	43.12	76.10	75.00	1/1/2006	1	3	3	0	0	0	1.00	
1.00	1.00	1.00	2.00	43.12	76.10	75.00	1/1/2006	1	3	3	0	0	0	2.00	
1.00	1.00	1.00	3.00	43.12	76.10	75.00	1/1/2006	1	3	3	0	0	0	3.00	

Y Fractional Year [Radians]	EOT Equation Of Time [Min]	E Equation Of Time [hr]	AST Apparent Solar Time [hr]	h hour angle [degrees]	δ declination [degrees]	Σ Tilt Angle [degrees]	θ _H Solar Zenith Angle [degrees]	β solar altitude angle [degrees]	Check β solar altitude angle [degrees]	φ solar azimuth angle [degrees]	east/ west	ψ surface azimuth angle (off south) [degrees]	γ surface- solar azimuth angle [degrees]
-0.0079	-2.70	-0.04	0.88	-166.77	-23.01	35.00	157.11	-67.11	-67.11	-147.22	EAST	0.00	147.22
-0.0072	-2.72	-0.05	1.88	-151.78	-23.01	35.00	149.23	-59.23	-59.23	-121.71	EAST	0.00	121.71
-0.0065	-2.74	-0.05	2.88	-136.78	-23.01	35.00	139.19	-49.19	-49.19	-105.36	EAST	0.00	105.36

θ Incidence Angle [degrees]	I _{DN} Direct Normal Radiation [BTUh/ft ²]	I _D Direct Solar Radiation [BTUh/ft ²]	I _{dh} Diffuse Horizontal Radiation [BTUh/ft ²]	I _d Diffuse Solar Raditiaon [BTUh/ft ²]	I _{GH} Global Horizontal Raditiaon [BTUh/ft ²]	I _H Horizontal Solar Radiaiton [BTUh/ft ²]	Dry Bulb Temperature [°F]	ρ _g Ground Solar Reflectance	I _R Reflected Solar Radiation [BTUh/ft ²]	I Total Solar Radiation On Surface [BTUh/ft2]	I Total Solar Irradiance on Surface [Wh/m ²]	HEAT On =1 Off = 0 DB ° F < Heat limit	COOL On =1 Off = 0 DB ° F > Cool limit
160.43	0.00	0.00	0.00	0.00	0.00	0.00	30.00	0.31	0.00	0.00	0.00	1	0
149.10	0.00	0.00	0.00	0.00	0.00	0.00	30.40	0.29	0.00	0.00	0.00	1	0
135.99	0.00	0.00	0.00	0.00	0.00	0.00	30.60	0.28	0.00	0.00	0.00	1	0

M/E ENGINEERING, P.C. November 19, 2021

Full ECON On=1 Off=0 DB °F > Heat limit and DB °F < Cool limit	Partial ECON On=1 Off=0 DB °F > Cool and DB °F < Max limit	heat/cool/econ	Ventilation OA Needed Total [Cfm]	Ventilation OA Needed Duct Total [Cfm]	Ventilation Through Duct Collectors [Cfm]	Ventilation Bypass Duct Collectors [Cfm]	Ventilation EA Req'd Cfm	radiation incident in	G _{max} Global solar radiation incident in the plane of the collector	A Collector	A Collector Area [m ²]		G _{coll} solar energy usable by the collector [Wh]
0	0	HEAT	0	0	0	0	0	[BTUh/ft2]	[Wh/m2]	800.00	74.22	0.00	0.00
0	0	HEAI	0	0	0	0	0	0.00	0.00	800.00	74.32	0.00	0.00
0	0	HEAT	0	0	0	0	0	0.00	0.00	800.00	74.32	0.00	0.00
0	0	HEAT	0	0	0	0	0	0.00	0.00	800.00	74.32	0.00	0.00

α Shortwave absorptivity of the collector	v wind speed mph	v wind speed ft/min	v wind speed m/s	Qcoll Ventilation through Collectors cfm	Qcoll Ventilation through Collectors m ³ /hr	collector efficiency	temperature rise	ΔTav I av ailable temperature rise °C	DB outdoor air temp °F		delivered air temperature °F	T _{delivered av1} Avaliable delivered air temperature °C (ΔT _{av1} +DB)	RA ° F (If sensible energy recovery device is present)	RA ° C (If sensible energy recovery device is present)
0.95	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.000	30.000	-1.111	30.000	-1.111	65.000	18.333
0.95	1.57	138.16	0.70	0.00	0.00	0.00	0.00	0.000	30.400	-0.889	30.400	-0.889	65.000	18.333
0.95	3.13	275.44	1.40	0.00	0.00	0.00	0.00	0.000	30.600	-0.778	30.600	-0.778	65.000	18.333

T _{delivered max}	T _{delivered max}	T _{delivered actual}	T delivered actual	∆Tact	∆Tact	Qsolar	Qsolar	Qsolar	Qsolar	Total Annual	Total Annual
Maximum	Maximum	Actual	Actual	actual	actual	Solar energy	Solar energy	Solar energy	Solar energy	Ventilation Heating	Ventilation Heating
delivered air	delivered air	delivered air	delivered air	temperature	temperature	Btuh	Wh	Check	Check	Energy Required	Energy Required
temperature	•		temperature	rise	rise			Btuh	Wh	Btuh	Wh
°F	°C	°F	°C	through	through						
				collector	collector						
				°F	°C						
47.759	8.755	30.000	-1.111	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
47.759	8.755	30.400	-0.889	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
47.759	8.755	30.600	-0.778	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

S	OLAR PANEL E	NERGY MODELING	RESULTS	
	DU	CT COLLECTOR		
ANTICIP	ATED VENTILA	TION COSTS W/O S	OLAR THE	RMAL
		BTUS REQUIRED		COST AT
MONTH	BTUS	WITH 80%		\$0.518
	REQUIRED	EFFICIENT	THERMS	PER
		HEATING PLANT		THERM
JANUARY	22,794,733	28,493,417	276	\$168.78
FEBRUARY	21,252,474	26,565,593	257	\$157.36
MARCH	13,523,799	16,904,749	164	\$100.13
APRIL	5,327,615	6,659,519	65	\$39.45
MAY	338,550	423,187	4	\$2.51
JUNE	13,320	16,650	0	\$0.10
JULY	0	0	0	\$0.00
AUGUST	0	0	0	\$0.00
SEPTEMBER	521,099	651,374	6	\$3.86
OCTOBER	1,139,230	1,424,038	14	\$8.44
NOVEMBER	4,695,451	5,869,314	57	\$34.77
DECEMBER	21,604,455	27,005,569	262	\$159.97
TOTAL	91,210,727	114,013,409	1,105	\$675.35

S	OLAR PANEL E	NERGY MODELING	RESULTS									
	DU	CT COLLECTOR										
FINAL ADJU	STED VENTIL	ATION COSTS USING	SOLAR T	HERMAL								
		BTUS REQUIRED		COST AT								
MONTH	BTUS	WITH 80%		\$0.518								
	REQUIRED	EFFICIENT	THERMS	PER								
HEATING PLANT THERM												
JANUARY 17,787,018 22,233,773 215 \$131.70												
FEBRUARY 14,614,668 18,268,334 177 \$108.21												
MARCH	7,784,758	9,730,947	94	\$57.64								
APRIL	3,433,311	4,291,639	42	\$25.42								
MAY	182,958	228,698	2	\$1.35								
JUNE	3,397	4,246	0	\$0.03								
JULY	0	0	0	\$0.00								
AUGUST	0	0	0	\$0.00								
SEPTEMBER	449,052	561,315	5	\$3.32								
OCTOBER	976,815	1,221,019	12	\$7.23								
NOVEMBER	3,574,437	4,468,046	43	\$26.47								
DECEMBER	17,670,087	22,087,609	214	\$130.83								
TOTAL	66,476,500	83,095,625	805	\$492.21								

Smith Intermediate School

Month	Day Of Month	n Day Of Year	CT Clock Time [hr] (Local standard time)	l Latitude [degrees]	L _{loc} Longitude of Actual Location [deg west]	L _{std} Standard Meridian for local time zone [deg west]	Date 2006 used to match bin data (January starts on a Sunday and Feburary has 28 days)	Week Of Month	DOW Day Of Week	Day Of Week Adjusted [Sunday=1 to Saturday=7, Holiday = 8]	lst, 2nd, 3rd, etc. Sunday of month (CAREFUL! Formula changes	· · · ·	Daylight Savings Ends (1st Sunday of November 2am becomes 1am, fall back to standard time)	DT Corrected Time For Daylight Savings [hr]
1.00	1.00	1.00	1.00	43.12	76.10	75.00	1/1/2006	1	3	3	0	0	0	1.00
1.00	1.00	1.00	2.00	43.12	76.10	75.00	1/1/2006	1	3	3	0	0	0	2.00
1.00	1.00	1.00	3.00	43.12	76.10	75.00	1/1/2006	1	3	3	0	0	0	3.00

Y Fractional Year [Radians]	EOT Equation Of Time [Min]	E Equation Of Time [hr]	AST Apparent Solar Time [hr]	h hour angle [degrees]	δ declination [degrees]	Σ Tilt Angle [degrees]	θ _H Solar Zenith Angle [degrees]	β solar altitude angle [degrees]	Check β solar altitude angle [degrees]	φ solar azimuth angle [degrees]	east/ west	ψ surface azimuth angle (off south) [degrees]	γ surface- solar azimuth angle [degrees]
-0.0079	-2.70	-0.04	0.88	-166.77	-23.01	35.00	157.11	-67.11	-67.11	-147.22	EAST	0.00	147.22
-0.0072	-2.72	-0.05	1.88	-151.78	-23.01	35.00	149.23	-59.23	-59.23	-121.71	EAST	0.00	121.71
-0.0065	-2.74	-0.05	2.88	-136.78	-23.01	35.00	139.19	-49.19	-49.19	-105.36	EAST	0.00	105.36

θ Incidence Angle [degrees]	I _{DN} Direct Normal Radiation [BTUh/ft ²]	I _D Direct Solar Radiation [BTUh/ft ²]	I _{dh} Diffuse Horizontal Radiation [BTUh/ft ²]	I _d Diffuse Solar Raditiaon [BTUh/ft ²]	I _{GH} Global Horizontal Raditiaon [BTUh/ft ²]	I _H Horizontal Solar Radiaiton [BTUh/ft ²]	Dry Bulb Temperature [°F]	ρ _g Ground Solar Reflectance	I _R Reflected Solar Radiation [BTUh/ft ²]	I Total Solar Radiation On Surface [BTUh/ft2]	I Total Solar Irradiance on Surface [Wh/m ²]	HEAT On =1 Off = 0 DB ° F < Heat limit	COOL On =1 Off = 0 DB ° F > Cool limit
160.43	0.00	0.00	0.00	0.00	0.00	0.00	30.00	0.31	0.00	0.00	0.00	1	0
149.10	0.00	0.00	0.00	0.00	0.00	0.00	30.40	0.29	0.00	0.00	0.00	1	0
135.99	0.00	0.00	0.00	0.00	0.00	0.00	30.60	0.28	0.00	0.00	0.00	1	0

M/E ENGINEERING, P.C. November 19, 2021

Full ECON On=1 Off=0 DB °F > Heat limit and DB °F < Cool limit	Partial ECON On=1 Off=0 DB °F > Cool and DB °F < Max limit	heat/cool/econ	Ventilation OA Needed Total [Cfm]	Ventilation OA Needed Duct Total [Cfm]	Ventilation Through Duct Collectors [Cfm]	Ventilation Bypass Duct Collectors [Cfm]	Ventilation EA Req'd Cfm	radiation incident in	G _{max} Global solar radiation incident in the plane of the collector	A Collector	A Collector Area [m ²]		G _{coll} solar energy usable by the collector [Wh]
0	0	HEAT	0	0	0	0	0	[BTUh/ft2]	[Wh/m2]	800.00	74.22	0.00	0.00
0	0	HEAI	0	0	0	0	0	0.00	0.00	800.00	74.32	0.00	0.00
0	0	HEAT	0	0	0	0	0	0.00	0.00	800.00	74.32	0.00	0.00
0	0	HEAT	0	0	0	0	0	0.00	0.00	800.00	74.32	0.00	0.00

α Shortwave absorptivity of the collector	v wind speed mph	v wind speed ft/min	v wind speed m/s	Qcoll Ventilation through Collectors cfm	Qcoll Ventilation through Collectors m ³ /hr	collector efficiency	temperature rise	ΔTav I av ailable temperature rise °C	DB outdoor air temp °F		delivered air temperature °F	T _{delivered av1} Avaliable delivered air temperature °C (ΔT _{av1} +DB)	RA ° F (If sensible energy recovery device is present)	RA ° C (If sensible energy recovery device is present)
0.95	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.000	30.000	-1.111	30.000	-1.111	65.000	18.333
0.95	1.57	138.16	0.70	0.00	0.00	0.00	0.00	0.000	30.400	-0.889	30.400	-0.889	65.000	18.333
0.95	3.13	275.44	1.40	0.00	0.00	0.00	0.00	0.000	30.600	-0.778	30.600	-0.778	65.000	18.333

T _{delivered max}	T _{delivered max}	T _{delivered actual}	T delivered actual	∆Tact	∆Tact	Qsolar	Qsolar	Qsolar	Qsolar	Total Annual	Total Annual
Maximum	Maximum	Actual	Actual	actual	actual	Solar energy	Solar energy	Solar energy	Solar energy	Ventilation Heating	Ventilation Heating
delivered air	delivered air	delivered air	delivered air	temperature	temperature	Btuh	Wh	Check	Check	Energy Required	Energy Required
temperature	•		temperature	rise	rise			Btuh	Wh	Btuh	Wh
°F	°C	°F	°C	through	through						
				collector	collector						
				°F	°C						
47.759	8.755	30.000	-1.111	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
47.759	8.755	30.400	-0.889	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
47.759	8.755	30.600	-0.778	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

S	OLAR PANEL E	NERGY MODELING	RESULTS									
	DU	CT COLLECTOR										
ANTICIP	ATED VENTILA	TION COSTS W/O S	OLAR THE	RMAL								
		BTUS REQUIRED		COST AT								
MONTH	BTUS	WITH 80%		\$0.5164								
	REQUIRED	EFFICIENT	THERMS	PER								
		HEATING PLANT		THERM								
JANUARY 22,794,733 28,493,417 276 \$168.78												
FEBRUARY	21,252,474	26,565,593	257	\$157.36								
MARCH	13,523,799	16,904,749	164	\$100.13								
APRIL	5,327,615	6,659,519	65	\$39.45								
MAY	338,550	423,187	4	\$2.51								
JUNE	13,320	16,650	0	\$0.10								
JULY	0	0	0	\$0.00								
AUGUST	0	0	0	\$0.00								
SEPTEMBER	521,099	651,374	6	\$3.86								
OCTOBER	1,139,230	1,424,038	14	\$8.44								
NOVEMBER	4,695,451	5,869,314	57	\$34.77								
DECEMBER	21,604,455	27,005,569	262	\$159.97								
TOTAL	91,210,727	114,013,409	1,105	\$675.35								

SOLAR PANEL ENERGY MODELING RESULTS									
DUCT COLLECTOR									
FINAL ADJUSTED VENTILATION COSTS USING SOLAR THERMAL									
		BTUS REQUIRED		COST AT					
MONTH	BTUS	WITH 80%		\$0.5164					
	REQUIRED	EFFICIENT	THERMS	PER					
		HEATING PLANT		THERM					
JANUARY	17,787,018	22,233,773	215	\$131.70					
FEBRUARY	14,614,668	18,268,334	177	\$108.21					
MARCH	7,784,758	9,730,947	94	\$57.64					
APRIL	3,433,311	4,291,639	42	\$25.42					
MAY	182,958	228,698	2	\$1.35					
JUNE	3,397	4,246	0	\$0.03					
JULY	0	0	0	\$0.00					
AUGUST	0	0	0	\$0.00					
SEPTEMBER	449,052	561,315	5	\$3.32					
OCTOBER	976,815	1,221,019	12	\$7.23					
NOVEMBER	3,574,437	4,468,046	43	\$26.47					
DECEMBER	17,670,087	22,087,609	214	\$130.83					
TOTAL	66,476,500	83,095,625	805	\$492.21					

M/E ENGINEERING, P.C. November 19, 2021

EEM-6: Outdoor Air Energy Recovery Opportunities JR/SR High School - AHU- 8 - Locker Rooms

JRJ SK High School - AHO- 8 - LOCKET ROOMS																					
EFLH Cooling and Heating. Syracuse High School, Cooling High School, Heating Ventilation, 100% OA	388 EFLH _{cool} 960 EFLH _{heat} 5000 cfm OA	ΔkWh _{ERU1} ΔkWh _{ERU1} ΔkWh _{ERU1}	=[((=[((=	1.08 1.08 749	x x	cfm OA 5000	x(x(Eff _{hx, sens ee} - 0.50 -	Eff _{hx, sens base})x 0.00)x		- Toutdoor, heating - 42.11))/())/(1000 1000	x x	Eff _{ElecHeat} 80.00))x))x	F _{ElecHeat})-)-	kW _{fan} 0.16]x]x	EFLH _{heat} 960
	70 Tindoor, heating	∆kWh _{heat}	-	749																	
	42.11 Toutdoor, heating																				
	75 T _{indoor, cooling}	ΔkWh_{ERU1}	=[((1.08	х	cfm OA	x(Eff _{hx, sens ee} -	Eff _{hx, sens base})x	(Toutdoor, cooling	- Tindoor, cooling))/(1000	х	EffElecCool))-	kW _{fan}]x	EFLH _{cool}		
	71.94 Toutdoor, cooling	ΔkWh_{ERU1}	=[((1.08	x	5000	х(0.50 -	0.00)x	(71.94	- 75.00))/(1000	х	11.2))-	0.16]x	388		
	0 Effhx, sens base	ΔkWh_{ERU1}	=	-349																	
	0.5 Eff _{hx, sens ee}				-																
Cooling Efficiency	11.2 EER	∆kWh _{cool}	=	-349																	
	80 Eff _{ElecHeat}																				
		∆kW _{ERU1}	=[((1.08	x	cfm OA	x(Eff _{hx, sens ee} -					1000	х	EffElecCool))-	kW _{fan}]x	CF		
Additional fan power due to ER PD only	0.16 kW _{fan}	∆kW _{ERU1}	=[((1.08	x	5000	x(0.50 -	0.00)x	(71.94	- 75.00))/(1000	х	11.2))-	0.16]x	0.8		
		∆kW _{ERU1}	=	-0.719																	
	Г	ΔkW		-0.719	7																
	L	ДКИ		-0.713																	
		∆MMbtu _{ERU1}	=[(1.08	x	cfm OA	x(Effby sees an -	Eff _{hx, sens base})x	(Tindoor beating	- Toutdoor besting))/(1000000	x	Eff _{FuelHeat})]×	F _{FuelHeat}	x	EFLHheat		
		∆MMbtu _{ERU1}	=[(1.08	x	5000	x(0.50 -			- 42.11))/(1000000	x	80.00)]x	1	х	960		
		∆MMbtu _{ERU1}	=	0.904																	
	_																				
		ΔMMbtu	=	0.904																	
		Δtherm	-	9	_																
	F				-																
		Total ∆kWh	-	400																	
		Total ∆kW	-	-0.719	_																
		Δtherm	-	9.036	1																

Δ\$ kWh = \$30.32 ∆\$ natural gas =

\$4.31

EEM-7: Kitchen Hood Controls

JR/SR High School

units	1
hp	1.0
∆kWh/hp	1968
∆kW/hp	0.411
CF	0.8
ft ² / 1,000	12.1
$ESF_{cooling}$	296
ESF _{heating}	13.7

ΔkWh_{exh}	=	units	х	hp	x(∆kWh/hp
ΔkWh_{exh}	=	1	х	1	x(1968
∆kWh _{exh}	=	1968				
			-			
∆kWh _{sup}	=	ft ² / 1,000	х	ESF _{cooling}		
ΔkWh_{sup}	=	12	х	296		
∆kWh _{sup}	=	3582				

Summer Peak Coincident Demand Savings

∆kW _{exh}	=	0.33						
ΔkW_{exh}	=	1	x	1	x(0.411)x	0.8
∆kW _{exh}	=	units	х	hp	х(ΔkW/hp)x	CF

Annual Fuel Energy Savings

$\Delta MMBtu_{sup}$	=	ft ² / 1,000	х	ESF _{heating}
$\Delta MMBtu_{sup}$	=	12	х	13.7
∆MMBtu _{sup}	=	166		
∆therm _{sup}	=	1658		

ΤΟΤΑ	L EEM	-7
Total ∆kWh	=	5550
Total ∆kW	=	0.33
∆therm	=	1658
∆\$ kWh	=	\$420.88
∆\$ natural gas	=	\$790.69

M/E Reference 211078.00

M/E ENGINEERING, P.C. November 19, 2021

)

M/E ENGINEERING, P.C. NOVEMBER 19, 2021

Randall Middle School

units	1
hp	0.5
∆kWh/hp	1968
∆kW/hp	0.411
CF	0.8
ft ² / 1,000	4.8
$ESF_{cooling}$	296
ESF _{heating}	13.7

Annual Electric En	ergy Sav	<u>vings</u>					
∆kWh _{exh}	=	units	х	hp	x(∆kWh/hp)
∆kWh _{exh}	=	1	х	0.5	x(1968)
∆kWh _{exh}	=	984					
ΔkWh _{sup} ΔkWh _{sup}	=	ft ² / 1,000 5	x	ESF _{cooling} 296			
ΔkWh _{sup}	=	1421	Ĵ	200			
-			-				

Summer Peak Coincident Demand Savings

ΔkW _{exh}		0.16	٦ ^ˆ	0.5	^(0.411)^	0.0
ΔkW _{exh}	=	1	x	0.5	x(0.411)x	0.8
∆kW _{exh}	=	units	х	hp	x(∆kW/hp)x	CF

Annual Fuel Energy Savings

ft² / 1,000 x $\Delta MMBtu_{sup}$ = $\Delta MMBtu_{sup}$ = 5 х ∆MMBtu_{sup} 66 = Δtherm_{sup} 658 =

ESF_{heating} 13.7

ΤΟΤΑ	L EEM	-7
Total ∆kWh	=	2405
Total ∆kW	=	0.16
∆therm	=	658
Δ\$ kWh	=	\$207.42
Δ\$ natural gas	=	\$373.96

M/E ENGINEERING, P.C. NOVEMBER 19, 2021

))

Barry Primary School

units	1
hp	0.5
∆kWh/hp	1968
∆kW/hp	0.411
CF	0.8
ft ² / 1,000	6.4
$ESF_{cooling}$	296
ESF _{heating}	13.7

Annual Electric En	ergy Sa	<u>vings</u>				
ΔkWh_{exh}	=	units	х	hp	x(∆kWh/hp
ΔkWh_{exh}	=	1	х	0.5	x(1968
∆kWh _{exh}	=	984				
ΔkWh_{sup}	=	ft ² / 1,000	х	ESF _{cooling}		
ΔkWh_{sup}	=	6	х	296		
∆kWh _{sup}	=	1894				

Summer Peak Coincident Demand Savings

ΔkW_{exh}	=	units	х	hp	x(∆kW/hp)x	CF
ΔkW_{exh}	=	1	x	0.5	x(0.411)x	0.8
∆kW _{exh}	=	0.16						

Annual Fuel Energy Savings

 $\Delta MMBtu_{sup} = ft^2 / 1,000 x$ $\Delta MMBtu_{sup} = 6 x$ $\Delta MMBtu_{sup} = 88$ $\Delta therm_{sup} = 877$

x ESF_{heating} x 13.7

ΤΟΤΑ	L EEM	-7
Total ∆kWh	=	2878
Total ∆kW	=	0.16
∆therm	=	877
∆\$ kWh	=	\$243.88
∆\$ natural gas	=	\$454.21

M/E ENGINEERING, P.C. NOVEMBER 19, 2021

))

Smith Intermediate School

units	1
hp	0.5
∆kWh/hp	1968
∆kW/hp	0.411
CF	0.8
ft ² / 1,000	6.4
$ESF_{cooling}$	296
ESF _{heating}	13.7

Annual Electric En	ergy Sa	<u>vings</u>				
ΔkWh_{exh}	=	units	х	hp	x(∆kWh/hp
∆kWh _{exh}	=	1	х	0.5	x(1968
∆kWh _{exh}	=	984				
ΔkWh_{sup}	=	ft ² / 1,000	х	ESF _{cooling}		
ΔkWh_{sup}	=	6	х	296		
∆kWh _{sup}	=	1894				
			-			

Summer Peak Coincident Demand Savings

∆kW _{exh}	=	0.16						
ΔkW_{exh}	=	1	x	0.5	x(0.411)x	0.8
ΔkW_{exh}	=	units	х	hp	x(∆kW/hp)x	CF

Annual Fuel Energy Savings

 $\Delta MMBtu_{sup} = ft^2 / 1,000 x$ $\Delta MMBtu_{sup} = 6 x$ $\Delta MMBtu_{sup} = 88$ $\Delta therm_{sup} = 877$

x ESF_{heating} x 13.7

ΤΟΤΑ	L EEM	-7
Total ∆kWh	=	2878
Total ∆kW	=	0.16
∆therm	=	877
∆\$ kWh	=	\$250.51
Δ\$ natural gas	=	\$452.80

EEM-8: Steam Trap Replacement

M/E ENGINEERING, P.C.
November 19, 2021

Barry Primary School																	
	units	5	Annual Fuel Energy	/ Saving:													
	ΔH _{vap}	966	ΔMMBtu	=	units	х	Loss _{steam}	х	ΔH_{vap}	/	Eff	х	$EFLH_{heating}$	/	1,000,000	x	F _{CR}
	Eff	0.75	ΔMMBtu	=	5	- ×	180	х	966	/	0.75	х	960	/	1,000,000	х	0.45
	EFLH _{heating}	960	ΔMMBtu	=	500												
	F _{CR}	0.45	Δtherm	=	4999												
	Dia	1.0															
	psig	2	Loss _{steam}	=	60	х	π/4	x	Dia ²	х	psia ^{0.97}	х	$F_{Discharge}$	х	FLoss		
	p _{atm}	14	Loss _{steam}	=	60	х	0.79	x	1	х	14.72	х	1	х	0		
	F _{Discharge}	0.7	Loss _{steam}	=	180												
	F _{Loss}	0.37															
	2055		psia	=	psig	+	p _{atm}										
			psia	_	2	+	Patm 14										
			psia	=	16												
					-												
			тот	AL EEM-	8	T											
			Total ∆kWh	=	0	T											
			Total ∆kW	=	0.00												
			Δtherm	=	4999												
			Δ\$ kWh	=	\$0.00												
			∆\$ natural gas	=	\$2,589.76												
Smith Intermediate School	units	5	Annual Fuel Energy	Covina	_												
	ΔH _{vap}	966	ΔMMBtu		units		Loss	x	ΔH_{vap}	/	Eff		551.0	,	1,000,000		r
	Eff	0.75	ΔMMBtu	=	5	x x	Loss _{steam} 180	x	966	,	0.75	x x	EFLH _{heating} 960	',	1,000,000	x x	F _{CR} 0.45
				=		Ъ	180	x	900	/	0.75	x	900	/	1,000,000	x	0.45
	EFLH _{heating}	960	ΔMMBtu	=	500	4											
	F _{CR}	0.45	Δtherm	=	4999												
	Dia	1.0							7		. 0.97						
	psig	2	Loss _{steam}	=	60	х	π/4	х	Dia ²	х	psia ^{0.97}	х	F _{Discharge}	х	FLoss		
	p _{atm}	14	Loss _{steam}	=	60	х	0.79	х	1	х	14.72	х	1	х	0		
	F _{Discharge}	0.7	Loss _{steam}	=	180												
	FLoss	0.37															
			psia	=	psig	+	p _{atm}										
			psia	=	2	+	14										
			, psia	=	16												
						-											
				AL EEM-	8	1											
			Total ∆kWh	=	0												
			Total ∆kW	=	0.00	4											
			Δtherm	=	4999	4											
			Δ\$ kWh	=	\$0.00												
			Δ\$ natural gas	=	\$2,581.73	_											

EEM-9 - Solar PV - Jr/Sr High School

Caution: Photovoltaic system performance predictions calculated by PWWHSS[®] include many inherent assumptions and uncertainties and do not reflect vorsibilists between PV technologies ner site-specific characteristics compt as impresented by PWWHSS[®] inputs For example, PV modules with better performance are not differentiated within PWWHSS[®] from Esser performing modules. Bish MeXIES[®] to the Esser MeXIE at https://serumd.gov/ that allev for more precise and complex modeling of PV systems. The essential

The expected range is based on 30 years of actual weather data at the given location and is intended to provide an indication of the variation you might son. For more information, please refer to this NRUL report: The Error Report.

Disclaimen: The PVRotts[®] Model ("Model") is provided by the National Renewable Energy (aborstory ("NRE."), which is operated by the **Jilance** for Sustainable linenge, LLC ("Allance") for the U.S. Department of Energy ("DOE") and may be used for any purpose whatsoever.

The correst DOS/NEU/ALLIANCE shot not be used in any representation, subvitting, publicity or other manner whotsheer to orace the Model. DOE/NEU/ALLIANCE shall not previde any support, consulting, training or assistance of any lots with regard to the use of the Model or any undailes, revisions or new versions of the Model.

USE BIOE PROOF OF ANY UDDATES, LEYINGS OF MANY VIRTIGAL OF THE VIDDATES, LINCE, AND TIS APPLIATES, OPPICIES, AGAINST, AND BIMADITES ADAINST ANY CLAIM OR DEHAND, DISLUDING, READOWALE, ATTORNEY, DISLUDING, READOWALE, THE MOBILIS PROVIDED TO DOGMELALIZIANCE AS IS AND ANY CONTESS OR IMPLED VIDATES FOR A VIDATES TO CAMES, DISLUDING, ANY CONTESS OR IMPLED VIDATES FOR A VIDATES TO CAMES, DISLUDING, ANY CONTESS AND ANY CONTESS OR IMPLED VIDATES FOR A VIDATES TO CAMES, DISLUDING, ANY CONTESS OR IMPLED VIDATES FOR A VIDATES TO CAMES, DISLUDING ANY CONTESS OR IMPLED VIDATES FOR A VIDATES TO CAMES AND ANY CONTESS OR ANY CONTE

The energy output range is based on analysis of 30 years of historical weather data for nearby, and is intended to provide an indication of the possible internerval versibility in generation for a Fined (open rack) PV system at this location.

RESULTS

2,057,442 kWh/Year*

System output may range from 1,980,700 to 2,121,017 kWh per year near this location.

Month	Solar Radiation {kWh/m ² /day}	AC Energy (kWh)	Value (\$)		
January	2.15	97,292	7,375		
February	3.03	122,300	9,270		
March	4.18	179,163	13,581		
April	5.18	208,311	15,790		
May	5.84	240,194	18,207		
June	6.02	232,529	17,626		
July	6 ₁ 05	240,159	18,204		
August	5.71	225,539	17,096		
September	4.88	189,765	14,384		
October	3.36	138,225	10,477		
November	2,37	99,704	7,558		
December	1.90	84,261	6,387		
nnua	4,22	2,057,442	\$ 155,955		

Requested Location	8 Valley View Drive Contland, New York
Weather Data Source	Lat, Lon: 42.57, -76.18 1.3 ml
Latitude	42.57° N
Longitude	76,18° W
PV System Specifications	
DC System Size	1725 kW
Modulle Type	Premium
Аггау Туре	Fixed (open rack)
Array Tilt	20°
Array Azimuth	180°
System Losses	14.08%
nverter Efficiency	96%
DC to AC Size Ratio	1_2
Economics	
Average Retail Electricity Rate	0_076 \$/kWh
Performance Metrics	
Capacity Factor	13.6%

EEM-9 - Solar PV - Randall Middle School

Caution: Photovoltaic system performance predictions calculated by PWWHttp:²⁸ include many inherent assumptions and uncertainties and to not reflect vorsitions between PV technologies ner allouperfic characteristics coupt as supposented by PWWHS²⁸ inputs For example, IV modules with better performance are not differentiated within PWWHS²⁸ from lesser performing modules. Both HitzL and previous companies provide more sophisticated PV moduling tools (such as the System Advisor Modul at https://sam.ml.gov/ that allow for more precise and complex modeling of PV systems.

The expected range is based on 30 years of actual waither data at the given boaton and is intended to provide an indication of the variation year might sale. For more information, please refer to this NRLL report: The Error Report.

Disclaimen: The PVIRIDS[®] Model ("Model") is provided by the National Renewable Energy (aborstrow, ("NRE,"), which is operated by the allance of subalinable linetys, LLC ("Allance") for the U.S. Department of Energy ("DDE") and may be used for any purpose shabaseves.

The norms DOE/NEE/UAL INCE shall not be used in any representation, advertising, publicity or other manner windsneems of uses the Node DOE/NEE/UAL NATE had not service any support, consubing, baking or awatence of any land with regard to the use of the Node or any updates, revisions or new versions of the Node.

Use of the PROJE of any updates, levenes or new variate of the Model TOU AGREE TO NDEMN FY DOC, INTELLALLANCE, AND TS AFF LATES, OFF CIER, AGMTS, AND IS MENDATES, ADA HST ANY CLAIM OR DEMAND; MELLID NG REASONABLE, THE MODEL S PROVEDED FOR OWNER, THE MODEL S PROV DED BY DOC MENTS, AND BUT NOT LIN THE TO THE MODEL FOR ANY PURPOSE WHATSOCHER, THE MODEL S PROV DED BY DOC MELLIS, MUSICAL ANCE AS S AND ANY DOMEDS OR NOT NOT LIN THE TO THE MODEL FOR ANY DESCRIPTION OF THE MODEL FOR ANY PURPOSE WHATSOCHER, THE MODEL S PROV DED BY DOC MELLIS, MULLION S BUT NOT LIN THE TO THE MODE BALL ANCE AS S AND ANY DOMEDS ARE EXPRESSING D SCIA MED TO DOC MELLIS, MULLIONS AND D SCIA MED TO THE MODES OF ANY DAMAGES WHATSOCHER, MULLIONSOCHER, THE ASSOCIATED WITH THE LOSS OF ANA OR PROFTS, WIT HOT LIN THE LOSS OF ANA OR PROFTS, WIT HO HAY RESULT FROM ANY ACT ON IN CONTRACT, MODEL BANG ON ACT ON IN CONTRACT, MODEL BORD OF HER TORK ON SOLANT THAT AR SES OUT OF AN IN CONSULNT THAT AR SES OUT OF AN IN CONSULNT THAT AR SES OFTER, MEROPARTICLE OF THE MODEL.

The energy subput range is based on analysis of 38 years of historical weather data for nearby, and is intended to provide an indication of the possible internerual workbillty in generation for a Fixed (open nack) PV system at this location.

RESULTS

268,909 kWh/Year*

System output may range from 258,878 to 277,218 kWh per year near this location.

Month	Solar Radiation	AC Energy	Value		
	{kWh/m ² /day}	(kWh)	(\$)		
January	2.16	12,664	1,093		
February	3.05	16,077	1,387		
March	4,27	23,843	2,058		
April	5.18	27,176	2,345		
May	5.84	31,017	2,677		
June	5.84	29,697	2,563		
July	6,24	32,082	2,769		
August	5.70	29,535	2,549		
September	4.87	24,655	2,128		
October	3.39	18,210	1,572		
November	2,46	13,326	1,150		
December	1.81	10,627	917		
nnua	4_23	268,909	\$ 23,208		

Requested Location	31 Randa Street Cortland, New York
Weather Data Source	Lat, Lon: 42.61, -76.18 1.1 mi
Latitude	42.61° N
Longitude	76,18° W
PV System Specifications	
DC System Size	225 kW
Modulle Type	Premium
Array Type	Fixed (open rack)
Array Tilt	20°
Array Azimuth	180°
System Losses	14.08%
nverter Efficiency	96%
DC to AC Size Ratio	1_2
Economics	
Average Retail Electricity Rate	0_086 \$/kWh
Performance Metrics	
Capacity Factor	13.6%

EEM-9 - Solar PV - Barry Primary School

Castion: Photovobal: system partirmance predictions calculated by PWWstts[®] induce many inherent assumptions and userstankles and do nit relet variations between IV technologies are silve-partic domethrickles compt as represented by PWWst2[®] inputs for cosmitte, PV modules with before performance are not differentiated within PWWst2[®] from lesser performing modules. Deth NREL and privite compenies private more sophisticated PW Model at https://sam.mel.gov) that allow for more precise and complex modeling of PV systems.

The expected range is based on 30 years of actual weather data at the given boaton and is intended to provide an indication of the variation you might size. For more information, please refer to this NRUL report: The Error Report.

Disabilities: The PVNotts¹⁸ Model ("Model") is provided by the National Renewable Energy Laboratory ("MRD."), which is operated by the Allance for Statianide linenge, LLC ("Allance") for the U.S. Department of Energy ("DOE") and may be used for any purpose whatsoever.

The norms DDE/NEL/ALIARCE shall not be used in any perpendicularity, advertising, be used in any representation, advertising, publicity or other manner wholsever to andersic expresente any antity that adopts or uses the Model. DDE/NEL/ALIARCE shall not privide any support, consisting, training or assistance of any kind with regard to the use of the Model or any udates, revisions or new versions of the Model.

The energy subput range is based on analysis of 30 years of historical weather data for nearby, and is intended to provide an indication of the possible interannual vortibility in generation for a fixed (open nack) PV system at this location.

_

RESULTS

System output may range from 252,611 to 270,507 kWh per year near this location.

Month	Solar Radiation	AC Energy	Value
	(kWh/m ² /day)	(kWh)	(\$)
January	2.15	12,408	1,051
February	3.03	15,598	1,321
March	4.18	22,850	1,935
April	5.18	26,567	2,250
May	5.84	30,633	2,595
June	6.02	29,656	2,512
July	6,05	30,629	2,594
August	5.71	28,764	2,436
September	4.88	24,202	2,050
October	3.36	17,629	1,493
November	2,37	12,716	1,077
December	1.90	10,746	910
nua	4.22	262,398	\$ 22,224

Requested Location	20 Raymond Ave Cortland, New York
Weather Data Source	Lat, Lon: 42.57, -76.18 1.4 ml
Latitude	42.57° N
Longitude	76,18° W
PV System Specifications	
DC System Size	220 kW
Module Type	Premium
Array Type	Fixed (open rack)
Array Tilt	20°
Array Azimuth	180°
System Losses	14.08%
Inverter Efficiency	96%
DC to AC Size Ratio	1_2
Economics	
Average Retail Electricity Rate	0_085 \$/kWh
Performance Metrics	
Capacity Factor	13.6%

EEM-9 - Solar PV - Smith Intermediate School

Castion: Photovobal: system partiemance predictions calculated by PWWstts[®] induce many inherent assumptions and userstankles and do nit relet variations between IV technologies are site-expedite downstrenkles compt as represented by PWWst2[®] inputs for comption, and the differentiation compt as many-accessed with better performance are not differentiated within FWWst2[®] from Issee performing models. Item NRLs and privite compenses private more septement Advisor Model at https://sam.mel.gov) that allow for more precise and complex modeling of PV systems.

The expected range is based on 30 years of actual weather data at the given boation and is intended to provide an indication of the variation you might size. For more information, please refer to this NRUL report: The Error Report.

Disdelines: The PVNets¹⁸ Model ("Model") is provided by the National Renewable Energy Laboratory ("MRD."), which is operated by the Allance for Sastainable linenge, LLC ("Allance") for the U.S. Department of Energy ("DDE") and may be used for any purpose shatesever.

The norms DDE/NREI/ALIARCE shall not be used in any representation, advertising, publicity or other manner wholsever to andresic expresente any antity that adopts or uses the Model. DDE/NREI/ALIARCE shall not privide any support, consisting, training or assistance of any kind with regard to the use of the Model or any udates, revisions or new versions of the Model.

The investment of the Model YOU AGREE TO INDEMNEY DOCIMENTIALINACE, AND TA APPLIATES, OPPICTES, AGDINS, AND EMPLOYES, AGAINST ANY CLAIM OR DEHANDS, INCLUDING RENGOMMENT ATTORNEYS PEES, RELATED TO YOUR USE, RELIANCE, O KA ADDITION OF THE MODEL FOR ANY PREDER WHITSCHURE, THE MODEL IS MICLIDEN DOCIMEL, ALLIANCE AS IS AND ANY DORMELS, THE MODEL IS MICLIDEN BUILTON'S BUT NOT LIMITED TO THE IMPLED WARDANTES OF MERCHANAGES OR ANY DAMAGES WHITSSCHUE, DOCUMENT, ANY DOCIMENT, SINGL FROM ANY ADDITION THO TIMENT SHALL DOG MERLIALLIANCE BE LIABLE FOR ANY SPECIAL, MORE OF NOT MONTH SHALL DOG MERLIALLIANCE BE LIABLE FOR ANY SPECIAL, BUT NOT LIMITES FOR A ANY DISCUSSION OF THE INSULAT RANA ANY ACTION IN CONTACT, MICLIENCE OR OFFEN WITH THE LOSS OF DATA OR MICHTS, MICHTS, MICHTS, FORLA MY ACTION IN CONTACT, MICLIENCE OR OTHER TORTONS CAN THAT ARSES OUT OF OR IN CONNECTION WITH THE USE OR DEFORMANCE OF THE MODEL.

The energy output range is based on analysis of 39 years of historical weather data for nearby, and is intended to provide an indication of the possible internanual vorbibility in generation for a fixed (open nack) PV system at this location. RESULTS

System output may range from 207,103 to 221,774 kWh per year near this location.

Month	Solar Radiation	AC Energy	Value		
	{kWh/m ² /day}	(kWh)	(\$)		
January	2.16	10,131	881		
February	3.05	12,861	1,119		
March	4,27	19,075	1,659		
April	5.18	21,741	1,891		
May	5.84	24,814	2,159		
June	5.84	23,757	2,067		
July	6,24	25,665	2,233		
August	5.70	23,628	2,056		
September	4.87	19,724	1,716		
October	3.39	14,568	1,267		
November	2 . 46	10,661	928		
December	1.81	8,501	740		
nnua	4.23	215,126	\$ 18,716		

Requested Location	33 Wheeler Avenue Cortland, New York
Weather Data Source	Lat, Lon: 42.61, -76.18 0.5 ml
Latitude	42.61° N
Longitude	76,18° W
PV System Specifications	
DC System Size	180 kW
Modulle Type	Premium
Аггау Туре	Fixed (open rack)
Array Tilt	20°
Array Azimuth	180°
System Losses	14.08%
nverter Efficiency	96%
DC to AC Size Ratio	1_2
Economics	
Average Retail Electricity Rate	0_087 \$/kWh
Performance Metrics	
Capacity Factor	13.6%

EEM-9 - Solar PV - District Offices/Bus Garage

Caution: Photovoltaic system performance predictions calculated by PWMHtts^(D) include many inherent assumptions and uncottainties and for not reflect variations between PV technologies nor allouperille cheracteristics catogrit as segmented by PWMHS^(D) inputs For example, PV modules with better performance are not differentiated within PWMHS^(D) from lesser performing modules. Beth HRLL and previous companies private more sophisticated PV moduling todals, used in HELL and previous moduling todals, used in HELL and previous Read at https://sam.uml.gov/ that allow for more precise and complex modeling of PV systems.

The expected range is based on 30 years of actual weather data at the given location and is intended to provide an indication of the variation year might such for more information, please refer to this NRUL report: The Ensy Report.

Disdiainen: The PVIRMS^{IB} Model ("Model") is provided by the National Renewable Energy Laboratory ("NRE:"), which is operated by the Allance for Sataliable linety, LLC ("Allance") for the U.S. Department of Energy ("DOE") and may be used for any purpose shakasewa.

The nonves DOE/NREL/ALLIARCE shall not be used in any representation, advertising, publicity or other matter situstaever to andense or presente any onthy that adopts or uses the Model. DOE/NREL/ALLIARCE shall not provide any support, consisting, toking or assistance of any lond with regard to the use of the Model or any updates, revisions or new versions of the Model.

Use in the model of any updates, lethods of new variates of the Model. YOU AGREE TO INCENTIFY DOCINELIALIZATION, AND EMPLOYEES AGAINST, ANY CLAM OR EMPLOYEES AGAINST, ANY CLAM OR EMPLOYEES AGAINST, ANY CLAM OR EMPLOY RES, REARED TO YOUR USE, RELINACE, OR A ROOTING EMPLOYEE, THE MODEL IS PROVIDED BY DOCIMEL, THE MODEL IS PROVIDED BY DOCIMEL, THE MODEL IS NOW ANY COMPLEX, INC. ON THE SHALL ANY COMPLEX INCLUSION BUT NOT LIMITED TO THE INFLICE WARGANTES OF MERCHARAGELY AND EMPLOY DISCLAME, NUMBER AND BUT NOT LIMITED TO THE INFLICE WARGANTES OF MERCHARAGELY AND EMPLOY AND ANY COMPLEX INCLUSION BUT NOT LIMITED TO THE INFLICE WARGANTES OF MERCHARAGELY AND INTERS FOR A NUMERICALLINCE BE LIABLE FOR ANY SPECIAL, BACTOR TOT LIMITES FOR ANY SPECIAL, DATI TOT LIMITES FOR ANY ACTION IN COMPLEXIC INCOMEQUENTIAL OF AND THE TOTAL THE LOSS OF DATA OR PROFTS, WITH THE LIDES OF DATA OR PROFTS, WI

The energy subput range is based on analysis of 30 years of historical weather data for nearby, and is intended to provide an indication of the possible internensal vorisibility in generation for a Fixed (open nack) PV system at this location.

RESULTS

208,726 kWh/Year*

System output may range from 200,941 to 215,176 kWh per year near this location.

Month	Solar Radiation	AC Energy	Value
	{kWh/m ² /day}	(kWh)	(\$)
January	2.15	9,870	882
February	3.03	12,407	1,109
March	4,18	18,176	1,625
April	5.18	21,133	1,889
May	5.84	24,368	2,178
June	6.02	23,590	2,109
July	6 ₁ 05	24,364	2,178
August	5.71	22,881	2,046
September	4.88	19,252	1,721
October	3.36	14,023	1,254
November	2,37	10,115	904
December	1.90	8,548	764
nnual	4.22	208,727	\$ 18,659
in tura	7122	200,121	\$ 10,0

Requested Location	1 Valley View Drive Cortland, New York			
Weather Data Source	Lat, Lon: 42.57, -76.18 1.3 ml			
Latitude	42.57° N			
Longitude	76,18° W			
PV System Specifications (Resident	ial)			
DC System Size	175 kW			
Modulle Type	Premium			
Array Type	Fixed (open rack)			
Array Tilt	20°			
Array Azimuth	180°			
System Losses	14.08%			
nverter Efficiency	96%			
DC to AC Size Ratio	1_2			
Economics				
Average Retail Electricity Rate	0_089 \$/kWh			
Performance Metrics				
Capacity Factor	13.6%			

BUDGET PRICING (from RS means data)

Mechanical/Electrical Engineering Consultants 60 LAKEFRONT BLVD, SUITE 320 BUFFALO, NY 14202

Budget Pricing Cost Estimate

PROJECT NAME: Cortland Enlarged City School District						
M/E REFERENCE: 211078 DATE: 11/19/2021						
DIVISION: ENERGY		BY:	RMR			

ITEM	DESCRIPTION	QTY.	UNIT	LABOR COST	MATERIAL COST	TOTAL ITEM COST
EEM-1: Lighting and Lighting	ghting Controls					
	Existing Fixtures - Cafeteria	10500	SF	\$0.00	\$0.00	\$0
	Existing Fixtures - Library	6627	SF	\$0.00	\$0.00	\$0
	Existing Fixtures - Stairwells	3750	SF	\$0.00	\$0.00	\$0
	TOTAL BASECASE					\$0
	LED Lighting & Controls - Cafeteria	10500	SF	\$0.80	\$1.73	\$26,600
	LED Lighting & Controls - Library	6627	SF	\$0.80	\$1.73	\$16,787
	LED Lighting & Controls - Stairwells	3750	SF	\$0.40	\$0.87	\$4,750
	TOTAL PROPOSED					\$48,137
	EEM-1 TOTAL INCREMENTAL COST					\$48,137

Budget Pricing Cost Estimate						
PROJECT NAME: Cortland Enlarged City School District						
M/E REFERENCE: 211078 DATE: 11/19/2021						
DIVISION:	ENERGY	BY:	RMR			

ITEM	DESCRIPTION	QTY.	UNIT	LABOR COST	MATERIAL COST	TOTAL ITEM COST
EEM-2: Envelope Imp	provements - JR/SR High School					
	Existing Roof To Remain	140,000	SF	\$0.00	\$0	\$0
	Existing Windows to Remain	167	EA	\$0.00	\$0	\$0
	TOTAL BASECASE					\$0
	Replace Roof, 6" insulation R-30	140,000	SF	\$18.00	\$7	\$3,556,361
	Replace Single Pane Windows	140,000	EA	\$180.00	\$300	\$80,160
	TOTAL PROPOSED	107	LA	\$180.00	\$300	\$3,636,521
n	EEM-2 TOTAL INCREMENTAL COST					\$3,636,521
EEM-2: Envelope Imp	provements - Randall Middle School					
	Existing Roof To Remain	43000	SF	\$0.00	\$0	\$0
	Existing Windows to Remain	167	EA	\$0.00	\$0	\$0
	TOTAL BASECASE					\$0
	Replace Roof, 6" insulation R-30	43,000	SF	\$18.00	\$7	\$1,092,311
	Replace Single Pane Windows	167	EA	\$180.00	\$300	\$80,160
	TOTAL PROPOSED					\$1,172,471
	EEM-2 TOTAL INCREMENTAL COST					\$1,172,471
FFM-2 · Envelope Im	provements - Barry Primary School					<i>v</i> 1,112,411
	Existing Roof To Remain	68000	SF	\$0.00	\$0	\$0
	Existing Windows to Remain	167	EA	\$0.00	\$0 \$0	\$0
	TOTAL BASECASE	107	En	φ0.00	φ0	\$0 \$0
						¢0
	Replace Roof, 6" insulation R-30	68,000	SF	\$18.00	\$7	\$1,727,375
	Replace Single Pane Windows	167	EA	\$180.00	\$300	\$80,160
	TOTAL PROPOSED					\$1,807,535
n	EEM-2 TOTAL INCREMENTAL COST					\$1,807,535
EEM-2: Envelope Imp	provements - Smith Intermediate					
	Existing Roof To Remain	60000	SF	\$0.00	\$0	\$0
	Existing Windows to Remain	167	EA	\$0.00	\$0	\$0
	TOTAL BASECASE					\$0
<u> </u>	Replace Roof, 6" insulation R-30	60,000	SF	\$18.00	\$7	\$1,524,155
	Replace Single Pane Windows	167	EA	\$180.00	\$300	\$80,160
	TOTAL PROPOSED					\$1,604,315
	EEM 2 TOTAL INCREMENTAL COST					A 4 C 2 C 2 C
	EEM-2 TOTAL INCREMENTAL COST					\$1,604,315

EEM-2: Envelope Improvements - District Offices/Bus Garage					
Existing Roof To Remain	24000	SF	\$0.00	\$0	\$0
Existing Windows to Remain	25	EA	\$0.00	\$0	\$0
TOTAL BASECASE					\$0
Replace Roof, 6" insulation R-30	24,000	SF	\$18.00	\$7	\$609,662
Replace Single Pane Windows	25	EA	\$180.00	\$300	\$12,000
TOTAL PROPOSED					\$621,662
EEM-2 TOTAL INCREMENTAL COST					\$621,662

Budget Pricing Cost Estimate						
PROJECT NAME: Cortland Enlarged City School Distric						
M/E REFERENCE:	211078	DATE:	11/19/2021			
DIVISION:	ENERGY	BY:	RMR			

ITEM	DESCRIPTION	QTY.	UNIT	LABOR COST	MATERIAL COST	TOTAL ITEM COST
EEM-3: Occupied / Un	occupied Controls - JR/SR High School					
	Existing Pneumatic Controls	0	EA	\$0.00	\$0	\$0
	TOTAL BASECASE					\$0
	Direct Digital Control Point Upgrade	90	EA			\$90,000
	TOTAL PROPOSED					\$90,000
	EEM-3 TOTAL INCREMENTAL COST					\$90,000
EEM-3: Occupied / Un	occupied Controls - Barry Primary School					. ,
	Existing Pneumatic Controls	0	EA	\$0.00	\$0	\$0
	TOTAL BASECASE					\$0
	Direct Digital Control Point Upgrade	50	EA			\$50,000
	TOTAL PROPOSED					\$50,000
	EEM-3 TOTAL INCREMENTAL COST					\$50,000
EEM-3: Occupied / Un	occupied Controls - Smith Intermediate					
	Existing Pneumatic Controls	0	EA	\$0.00	\$0	\$0
	TOTAL BASECASE					\$0
	Direct Digital Control Point Upgrade	50	EA			\$50,000
	TOTAL PROPOSED					\$50,000
	EEM-3 TOTAL INCREMENTAL COST					\$50,000

Budget Pricing Cost Estimate						
PROJECT NAME: Cortland Enlarged City School District						
M/E REFERENCE:	211078	DATE:	11/19/2021			
DIVISION:	ENERGY	BY:	RMR			

ITEM	DESCRIPTION	QTY.	UNIT	LABOR COST	MATERIAL COST	TOTAL ITEM COST
EEM-4: Heating and Co	ooling Plant Upgrades - JR/SR High School					
EEM-4a: Heating and C	Cooling Plant Upgrades - Install High Efficiency Bo	ile <u>r</u>				
	Existing Heating and Cooling Plant	0	EA	\$0.00	\$0	\$0
	TOTAL BASECASE					\$0
	Install Condensing Boilers (3x 6MMBTU units)	3	EA	\$16,300.00	\$148,750	\$495,150
	TOTAL PROPOSED					\$495,150
	EEM-4a TOTAL INCREMENTAL COST					\$495,150
EEM-4b: Heating and C	Cooling Plant Upgrades - Install Ground Source He	eat Pump	(GSHP)			
	Existing Heating and Cooling Plant	0	EA	\$0.00	\$0	\$0
	TOTAL BASECASE					\$0
	Install Ground Source Heat Pumps (4.4 MMBTU)	3	EA			\$885,000
	Install Geothermal Wells	320	EA		\$10,000	\$3,200,000
	TOTAL PROPOSED					\$4,085,000
	EEM-4b TOTAL INCREMENTAL COST					\$4,085,000

Budget Pricing Cost Estimate						
PROJECT NAME: Cortland Enlarged City School District						
M/E REFERENCE:	211078	DATE:	11/19/2021			
DIVISION:	ENERGY	BY:	RMR			

ITEM	DESCRIPTION	QTY.	UNIT	LABOR COST	MATERIAL COST	TOTAL ITEM COST
EEM-4: Heating and C	poling Plant Upgrades - Barry Primary School		-			
	Cooling Plant Upgrades - Install High Efficiency Bo	iler				
	Existing Heating and Cooling Plant	0	EA	\$0.00	\$0	\$0
	TOTAL BASECASE					\$0
	Install High Efficiency Boilers (3x2MMBTU units)	3	EA	\$7,950.00	\$38,375	\$138,975
	TOTAL PROPOSED					\$138,975
	EEM-4a TOTAL INCREMENTAL COST					\$138,975
EEM-4b: Heating and	Cooling Plant Upgrades - Conversion to natural ga	s condens	sing hot wta	er boilers and	heating system	<u>n</u>
	Existing Heating and Cooling Plant	0	EA	\$0.00	\$0	\$0
	TOTAL BASECASE					\$0
	Install High Efficiency Boilers (3x 2MMBTU units)	3	EA	\$16,300.00	\$148,750	\$495,150
	Piping Conversion - Steam to Hot Water	1	EA			\$750,000
	Unit Ventilator Replacement	40	EA		\$15,000	\$600,000
	AHU replacement	3	EA		\$50,000	\$150,000
	TOTAL PROPOSED					\$1,995,150
	EEM-4b TOTAL INCREMENTAL COST					\$1,995,150
EEM-4c: Heating and C	Cooling Plant Upgrades - Install Ground Source He			^	.	.
	Existing Heating and Cooling Plant	0	EA	\$0.00	\$0	\$0
	TOTAL BASECASE					\$0
	Install Ground Source Heat Pump	2	EA			\$590,000
	Install Geothermal Wells	160	EA		\$10,000	\$1,600,000
	Piping Conversion - Steam to Hot Water	1	EA			\$750,000
	Unit Ventilator Replacement	40	EA		\$15,000	\$600,000
	AHU replacement	3	EA		\$50,000	
	TOTAL PROPOSED	-				\$3,690,000
	EEM-4c TOTAL INCREMENTAL COST					\$3,690,000
EEM-4d: Heating and (Cooling Plant Upgrades - Geothermal Well Field W	ith Water	to Air Sourc	e Heat Pump	<u>s</u>	
	Existing Heating and Cooling Plant	0	EA	\$0.00	\$0	\$0
	TOTAL BASECASE					\$0
	-					
	Install Geothermal Wells	160	EA		\$10,000	
	Piping Conversion - Steam to Hot Water	1	EA			\$750,000
	Terminal Heat Pumps	50	EA		\$15,000	
	AHU replacement	3	EA		\$50,000	
	TOTAL PROPOSED					\$3,250,000
	EEM-4c TOTAL INCREMENTAL COST			+		\$2.250.000
1						\$3,250,00

Budget Pricing Cost Estimate						
PROJECT NAME: Cortland Enlarged City School District						
M/E REFERENCE:	211078	DATE:	11/19/2021			
DIVISION:	ENERGY	BY:	RMR			

ITEM	DESCRIPTION	QTY.	UNIT	LABOR COST	MATERIAL COST	TOTAL ITEM COST
EEM-4: Heating and C	cooling Plant Upgrades - Smith Intermediate Schoo	<u>I</u>				
EEM-4a: Heating and	Cooling Plant Upgrades - Install High Efficiency Bo	iler				
	Existing Heating and Cooling Plant	0	EA	\$0.00	\$0	\$0
	TOTAL BASECASE					\$0
	Install High Efficiency Boilers (3x 2MMBTU units)	3	EA	\$7,950.00	\$38,375	\$138,975
	TOTAL PROPOSED					\$138,975
	EEM-4a TOTAL INCREMENTAL COST					\$138,975
EEM-4b: Heating and	Cooling Plant Upgrades - Conversion to natural ga	s condens	sing hot wta	er boilers and	heating system	
	Existing Heating and Cooling Plant	0	EA	\$0.00	\$0	\$0
	TOTAL BASECASE					\$0
				-		
	Install High Efficiency Boilers (3x2MMBTU units)	3	EA	\$16,300.00	\$148,750	\$495,150
	Piping Conversion - Steam to Hot Water	1	EA			\$750,000
	Unit Ventilator Replacement	40	EA		\$15,000	\$600,000
	AHU replacement	3	EA		\$50,000	\$150,000
	TOTAL PROPOSED					\$1,995,150
	EEM-4b TOTAL INCREMENTAL COST					\$1,995,150
EEM-4c: Heating and	Cooling Plant Upgrades - Install Ground Source He	at Pump ((GSHP)			
	Existing Heating and Cooling Plant	0	EA	\$0.00	\$0	\$0
	TOTAL BASECASE					\$0
	Install Ground Source Heat Pump	2	EA			\$590,000
	Install Geothermal Wells	160	EA		\$10,000	\$1,600,000
	Piping Conversion - Steam to Hot Water	1	EA			\$750,000
	Unit Ventilator Replacement	40	EA		\$15,000	\$600,000
	AHU replacement	3	EA		\$50,000	\$150,000
	TOTAL PROPOSED					\$3,690,000
	EEM-4c TOTAL INCREMENTAL COST					\$3,690,000
EEM-4d: Heating and	Cooling Plant Upgrades - Geothermal Well Field W	ith Water	to Air Sourc	e Heat Pump	5	
	Existing Heating and Cooling Plant	0	EA	\$0.00	\$0	\$0
	TOTAL BASECASE					\$0
	Install Geothermal Wells	160	EA		\$10,000	¢1 600 000
	Piping Conversion - Steam to Hot Water				φ10,000	\$1,600,000
	Terminal Heat Pumps	50	EA		\$15,000	\$750,000 \$750,000
		50	EA			\$750,000 \$150,000
	AHU replacement TOTAL PROPOSED	3	EA		\$50,000	\$150,000
<u> </u>						\$3,250,000
	EEM-4c TOTAL INCREMENTAL COST			1		\$3,250,000

Budget Pricing Cost Estimate						
PROJECT NAME: Cortland Enlarged City School District						
M/E REFERENCE:	211078	DATE:	11/19/2021			
DIVISION:	ENERGY	BY:	RMR			

ITEM	DESCRIPTION	QTY.	UNIT	LABOR COST	MATERIAL COST	TOTAL ITEM COST
EEM-4: Heating and Co	ooling Plant Upgrades - District Offices/Bus Garage	<u>)</u>				
EEM-4a: Heating and (Cooling Plant Upgrades - Air Source Heat Pumps (VRF)				
	Existing Heating and Cooling	0	EA	\$0.00	\$0	\$0
	TOTAL BASECASE					\$0
	Air Source Heat Pumps (VRF) for offices (20ton)	1	EA	\$15,900.00	\$105,500	\$121,400
	TOTAL PROPOSED					\$121,400
	EEM-4a TOTAL INCREMENTAL COST					\$121,400
EEM-4b: Heating and (Cooling Plant Upgrades - Geothermal Well Field w	ith Water t	to Water Gro	ound Source H	leat Pumps	
	Existing Heating and Cooling	0	EA	\$0.00	\$0	\$0
	TOTAL BASECASE					\$0
	Install Geothermal Wells	30	EA		\$10,000	\$300,000
	Install Ground Source Heat Pump	2	EA		\$86,025	\$172,050
	TOTAL PROPOSED					\$472,050
	EEM-4b TOTAL INCREMENTAL COST					\$472,050

Budget Pricing Cost Estimate						
PROJECT NAME: Cortland Enlarged City School District						
M/E REFERENCE:	211078	DATE:	11/19/2021			
DIVISION:	ENERGY	BY:	RMR			

ITEM	DESCRIPTION	QTY.	UNIT	LABOR COST	MATERIAL COST	TOTAL ITEM COST
EEM-5: Solar Thermal	Heat Recovery - JR/SR High School					
	Existing Outdoor Air Intake	0	EA	\$0.00	\$0	\$0
	TOTAL BASECASE					\$0
	Solar Thermal Heat Recovery (4' x 10') Collector	40	EA			\$53,716
	TOTAL PROPOSED					\$53,716
	EEM-6 TOTAL INCREMENTAL COST					\$53,716
EEM-5: Solar Thermal	Heat Recovery - Barry Primary School					
	Existing Outdoor Air Intake	0	EA	\$0.00	\$0	\$0
	TOTAL BASECASE					\$0
	Solar Thermal Heat Recovery (4' x 10') Collector	20	EA			\$24,792
	TOTAL PROPOSED					\$24,792
	EEM-6 TOTAL INCREMENTAL COST					\$24,792
EEM-5: Solar Thermal	Heat Recovery - Smith Intermediate					
	Existing Outdoor Air Intake	0	EA	\$0.00	\$0	\$0
	TOTAL BASECASE					\$0
	Solar Thermal Heat Recovery (4' x 10') Collector	20	EA			\$24,792
	TOTAL PROPOSED					\$24,792
	EEM-6 TOTAL INCREMENTAL COST					\$24,792

Budget Pricing Cost Estimate						
PROJECT NAME: Cortland Enlarged City School District						
M/E REFERENCE:	211078	DATE:	11/19/2021			
DIVISION:	ENERGY	BY:	RMR			

ITEM	DESCRIPTION	QTY.	UNIT	LABOR COST	MATERIAL COST	TOTAL ITEM COST
EEM-6: Outdoor Air Ene	ergy Recovery Opportunities - JR/SR High School					
	Existing Supply and Exhaust System To Remain	0	EA	\$0.00	\$0	\$0
	TOTAL BASECASE					\$0
	Run-around loop, glycol, 50% efficient	1	EA	\$3,510.00	\$10,897	\$14,407
	TOTAL PROPOSED					\$14,407
	EEM-6 TOTAL INCREMENTAL COST					\$14,407

Budget Pricing Cost Estimate						
PROJECT NAME: Cortland Enlarged City School District						
M/E REFERENCE:	211078	DATE:	11/19/2021			
DIVISION:	ENERGY	BY:	RMR			

ITEM	DESCRIPTION	QTY.	UNIT	LABOR COST	MATERIAL COST	TOTAL ITEM COST
EEM-7: Kitchen Ho	od Controls - JR/SR High School					
	Existing Exhaust Fan and Supply Fan To					
	Remain	0	EA	\$0.00	\$0	\$0
	TOTAL BASECASE					\$0
	1 HP Motor and VFD	1	EA	\$748	\$6,004.00	\$6,752
	5 HP Motor and VFD	1	EA	\$748	\$6,570.00	\$7,318
	TOTAL PROPOSED					\$14,070
	EEM-7 TOTAL INCREMENTAL COST	_				\$14,070
FFM-7 [.] Kitchen Ho	od Controls - Randall Middle School					. , ,
	Existing Exhaust Fan and Supply Fan To					
	Remain	0	EA	\$0.00	\$0	\$0
	TOTAL BASECASE					\$0
	1-3 HP Motor and VFD	2	EA	\$748	\$6,004.00	\$13,504
	TOTAL PROPOSED					\$13,504
	EEM-7 TOTAL INCREMENTAL COST					\$13,504
CENZ. Kitaban Ila						\$13,504
EENF7: KIICHEN HO	od Controls - Barry Primary School Existing Exhaust Fan and Supply Fan To					
	Remain	0	EA	\$0.00	\$0	\$0
	TOTAL BASECASE	-				\$0
	1-3 HP Motor and VFD	2	EA	\$748	\$6,004.00	\$13,504
	TOTAL PROPOSED					\$13,504
	EEM-7 TOTAL INCREMENTAL COST					\$13,504
EEM-7: Kitchen Ho	od Controls - Smith Intermediate					
	Existing Exhaust Fan and Supply Fan To					
	Remain	0	EA	\$0.00	\$0	\$0
	TOTAL BASECASE					\$0
	1-3 HP Motor and VFD	2	EA	\$748	\$6,004.00	\$13,504
	TOTAL PROPOSED			φ140	ψ0,007.00	\$13,504
						,
	EEM-7 TOTAL INCREMENTAL COST					\$13,504

Budget Pricing Cost Estimate					
PROJECT NAME: Cortland Enlarged City School District					
M/E REFERENCE:	211078	DATE:	11/19/2021		
DIVISION:	ENERGY	BY:	RMR		

ITEM	DESCRIPTION	QTY.	UNIT	LABOR COST	MATERIAL COST	TOTAL ITEM COST
EEM-8: Steam Trap Re	placement - Barry Primary School					
	Existing Steam Traps To Remain	0	EA	\$0.00	\$0	\$0
	TOTAL BASECASE					\$0
	Study Existing Steam Traps	1	EA	\$1,000	\$0.00	\$1,000
	Repair/Replace Failed Steam Traps	3	EA	\$100	\$500.00	\$1,800
	TOTAL PROPOSED					\$2,800
	EEM-2 TOTAL INCREMENTAL COST					\$2,800
EEM-8: Steam Trap Re	placement - Smith Intermediate					
	Existing Steam Traps To Remain	0	EA	\$0.00	\$0	\$0
	TOTAL BASECASE					\$0
	Study Existing Steam Traps	1	EA	\$1,000	\$0.00	\$1,000
	Replace Failed Steam Traps	3	EA	\$100	\$500.00	\$1,800
	TOTAL PROPOSED					\$2,800
	EEM-2 TOTAL INCREMENTAL COST					\$2,800

Budget Pricing Cost Estimate						
PROJECT NAME: Cortland Enlarged City School District						
M/E REFERENCE:	211078	DATE:	11/19/2021			
DIVISION:	ENERGY	BY:	RMR			

ITEM	DESCRIPTION	QTY.	UNIT	LABOR COST	MATERIAL COST	TOTAL ITEM COST
EEM-9: Solar PV Arry	- JR/SR High School					
	Solar PV (1725 kW array)	1725	EA	\$1,800.00	\$600	\$4,140,000
	TOTAL EEM-6 INCREMENTAL COST					\$4,140,000
EEM-9: Solar PV Arry	- Randall Middle School					
				A 1 000 00		A- (0.000
	Solar PV (225 kW array)	225	EA	\$1,800.00	\$600	\$540,000
	TOTAL EEM-6 INCREMENTAL COST					\$540,000
EEM-9: Solar PV Arry	Barry Primary School					
	Solar PV (220 kW array)	220	EA	\$1,800.00	\$600	\$528,000
	TOTAL EEM-6 INCREMENTAL COST					\$528,000
EEM-9: Solar PV Arry	- Smith Intermediate					
	Solar PV (180 kW array)	180	EA	\$1,800.00	\$600	\$432,000
	TOTAL EEM-6 INCREMENTAL COST					\$432,000
EEM-9: Solar PV Arry	- <u>District Offices/Bus Garage</u>					
	Solar PV (175 kW array)	175	EA	\$1,800.00	\$600	\$420,000
	TOTAL EEM-6 INCREMENTAL COST					\$420,000

PHOTOGRAPHS AND EQUIPMENT LIST

Available upon request