Geometry R	Name
WS 4.9 Overlapping Triangles	Date

6. Given: $\overline{AB} \perp \overline{BF}$, $\overline{CD} \perp \overline{BF}$, $\overline{BD} \cong \overline{FE}$, $\angle 1 \cong \angle 2$. *Prove*: $\triangle ABE \cong \triangle CDF$.

Period

- 7. Given: $\overline{LP} \perp \overline{PN}, \overline{MN} \perp \overline{PN}, \overline{LP} \cong \overline{MN}, \overline{PR} \cong \overline{NS}, \overline{PRSN}.$ *Prove:* $\triangle LPS \cong \triangle MNR.$
- 8. Given: $\angle BAC \cong \angle BCA$, \overline{CD} bisects $\angle BCA$, \overline{AE} bisects $\angle BAC$. *Prove*: $\triangle ADC \cong \triangle CEA$.
- 9. Given: $\overline{TR} \cong \overline{TS}$, $\overline{MR} \cong \overline{NS}$. Prove: $\triangle RTN \cong \triangle STM$.

- Given: AB ≈ DB, ∠A ≈ ∠D, ∠DBA ≈ ∠CBE. Prove: △ABE ≈ △DBC.
 Given: DA ≈ EC, DC ≈ EA. Prove: a. △CAD ≈ △ACE. DA ⊥ AB, CB ⊥ AB, AD ≈ BC. Prove: a. △DAB ≈ △CBA. b. ∠DCA ≈ ∠EAC.

- **13.** Given: \overline{ADB} , \overline{BEC} , $\overline{BD} \cong \overline{BE}$, $\overline{DA} \cong \overline{EC}$. *Prove*: **a.** $\triangle DBC \cong \triangle EBA$. **b.** $\angle A \cong \angle C$. **14.** Given: \overline{ADEB} , $\overline{AC} \cong \overline{BC}$, $\overline{CE} \cong \overline{CD}$, $\overline{AE} \cong \overline{BD}$.
- *Prove*: **a.** $\triangle ACE \cong \triangle BCD$. **b.** $\angle 1 \cong \angle 2$.
- 15. If $\overline{RT} \cong \overline{ST}$ and median $\overline{RB} \cong$ median \overline{SA} , prove that $\angle RAS \cong \angle SBR$.

- 16. Given \overrightarrow{BFA} , \overrightarrow{CFD} , $\angle ECF \cong \angle CFA$, $\overrightarrow{CF} \cong \overrightarrow{FD}$, and $\overrightarrow{CE} \cong \overrightarrow{FB}$, prove that $\overrightarrow{EF} \cong \overrightarrow{BD}$.
- 17. Given \overline{ADB} , \overline{BEC} , $\overline{BD} \cong \overline{BE}$, and $\overline{DA} \cong \overline{EC}$, prove that $\angle 1 \cong \angle 2$.
- **18.** If \overline{AC} and \overline{BD} intersect at $E, \angle D \cong \angle C, M$ is the midpoint of \overline{DC} , and $\angle 1 \cong \angle 2$, prove that $\overline{DB} \cong \overline{CA}$.

In 20-23, select the numeral preceding the choice that best completes the statement.

20. It can be proved that	$\angle YWX \cong \angle ZXW$ if it is known that	at $Z Y$
(1) $\overline{ZW} \cong \overline{YX}$	(2) $\overline{YW} \cong \overline{YX}$	
(3) $\overline{PW} \cong \overline{PX}$	(4) $\overline{PW} \cong \overline{YX}$	P
21. If $\triangle ZPW \cong \triangle YPX$, it can be proved that		
(1) $\triangle ZPW$ is isoscele	(2) $\triangle YPX$ is iso	osceles W X
(3) $\triangle PWX$ is isoscele		osceles Ex. 20–21
		\mathcal{L}^{C}
22. If $\overline{AB} \cong \overline{AC}$, it can be proved that $\overline{CD} \cong \overline{BE}$ if it is also known that $E_{\pm} = \frac{4}{4}$		
(1) $\angle 1 \cong \angle 2$	(2) $\angle 3 \cong \angle 4$	22E
(3) $\angle 3 \cong \angle 5$	$(4) \ \angle 4 \cong \angle 6$	A O I
23. If $\angle 3 \cong \angle 4$, it can be proved that $\overline{EC} \cong \overline{DB}$ if it is also know that D		
(1) $\overline{CF} \cong \overline{BF}$	(2) $\overline{CD} \cong \overline{BE}$	B
(3) $\overline{CA} \cong \overline{BA}$	(4) $\overline{EA} \cong \overline{DA}$	Ex. 22–23