Geometry R WS 4.7 Isosceles and Equilateral Triangles

Name	
Date	Period

Ex. 8

- 1. In $\triangle ABC$, if $\overline{CA} \cong \overline{CB}$ and $m \angle A = 50$, find $m \angle B$.
- **2.** In $\triangle ABC$, $\overline{AB} \cong \overline{BC}$. If AB = 5x and BC = 2x + 18, find AB and BC.
- 3. In isosceles triangle ABC, $\overline{AB} \cong \overline{BC}$. If AB = 5x + 10, BC = 3x + 40, and AC = 2x + 30, find the length of each side of the triangle.
- **4.** In $\triangle ABC$, $\overline{AB} \cong \overline{BC}$. If $m \angle A = 7x$ and $m \angle C = 2x + 50$, find $m \angle A$ and $m \angle C$.
- 5. In $\triangle EFG$, $\overline{EF} \cong \overline{FG}$. If $m \angle E = 4x + 50$, $m \angle F = 2x + 60$, and $m \angle G = 14x + 30$, find $m \angle E$, $m \angle F$, and $m \angle G$.

- 7. Given: Isosceles triangles ABC and ADC have common base \overline{AC} . Prove: $\angle BAD = \angle BCD$.
- 8. If $\overline{CA} \cong \overline{CB}$, and $\overline{DA} \cong \overline{EB}$, prove that $\angle 1 \cong \angle 2$.

- **9.** Given: In $\triangle ABC$, $\overline{CA} \cong \overline{CB}$, $\overline{AR} \cong \overline{BS}$, $\overline{DR} \perp \overline{AC}$, and $\overline{DS} \perp \overline{BC}$. *Prove:* $\overline{DR} \cong \overline{DS}$.
- 10. In isosceles triangle ABC, D and F are midpoints of the congruent legs, and E and G are the trisection points of the base ($\overline{AE} \cong \overline{EG} \cong \overline{GB}$). Prove that $\overline{DE} \cong \overline{FG}$.
- 11. Given RPQT, $SR \cong ST$, and $\angle 1 \cong \angle 2$, prove that $\triangle PSQ$ is an isosceles triangle.

- **12.** In $\triangle ABC$, $\overline{AB} \cong \overline{AC}$, $\overline{DE} \perp \overline{BC}$, $\overline{FG} \perp \overline{BC}$, and $\overline{BG} \cong \overline{CE}$. Prove that $\overline{BD} \cong \overline{CF}$.
- **13.** Given $\overline{AD} \cong \overline{BE}$, $\overline{CD} \cong \overline{CE}$, and \overline{ADEB} , prove that $\overline{AC} \cong \overline{BC}$.
- 14. If $\triangle ABC$ is an equilateral triangle and $\overline{CT} \cong \overline{AR} \cong \overline{BS}$, prove:

a. $\overline{TA} \cong \overline{RB} \cong \overline{SC}$ **b.** $\triangle TAR \cong \triangle RBS \cong \triangle SCT$ **c.** $\overline{TR} \cong \overline{RS} \cong \overline{ST}$ **d.** $\triangle TRS$ is an equilateral triangle.